Limites

Páginas: 3 (708 palabras) Publicado: 19 de febrero de 2013
2.3 EJERCICIOS DE APLICACIÓN


Ejercicio: operaciones con funciones
Sean las funciones f(x) = 3 x + 1, y g(x) = 2 x - 4.
Definir la función f + g y calcular las imágenes de los números 2, -3 y1/5.
Resolución:
- La función f + g se define como
(f + g)(x) = f(x) + g(x) = x + 1 + 2 x - 4 = 5 x - 3.
- (f + g)(2) = 5 · 2 - 3 = 7
(f + g)(-3) = 5(-3) - 3 = -18
(f + g)(1/5) = 5 · 1/5 - 3 = -2Obsérvese que si se calculan las imágenes de f y g por separado y se suman, el resultado es el mismo.
Por ejemplo, para la imagen del 2,
|f(2) = 3.2 + 1 = 7 |(f + g)(2) = 7 + 0 = 7|
|g(2) = 2.2 - 4 = 0 | |


Dadas las funciones f (x) = x ² - 3, y g(x) = x + 3, definir la función (f - g)(x).
Calcular las imágenes de 1/3, -2 y 0mediante la función f - g.
Resolución:
- (f - g)(x) = f(x) - g(x) = x ² - 3 - (x + 3) = x ² - 3 - x - 3 = x ² - x - 6
- (f - g)(1/3) = (1/3) ² - 1/3 - 6 = - 56/9
- (f - g)(-2) = (-2) ² - (-2) - 6= - 0
- (f - g)(0) = (0) ² - 0 - 6 = - 6
Calculando las imágenes de los números mediante las funciones f y g por separado, y efectuando la resta, se obtiene el mismo resultado.
3) Dadas lasfunciones f(x) = x/2 - 3 y g(x) = 2.x + 1, definir la función f.g.
Resolución:
- (f.g)(x) = f(x).g(x) = (x/2 - 3).(2.x + 1) = x ² - 11.x/2 - 3
Calculando las imágenes de los números mediante lasfunciones f y g por separado, y multiplicando después, se obtienen los mismos resultados.
Dadas las funciones f(x) = - x - 1, y g(x) = 2 x + 3, definir f/g.
Calcular las imágenes de los números - 1, 2 y 3/2mediante f/g.
Resolución:
(f/g)(x) = f(x)/g(x) = (-x - 1)/(2.x + 3)
La función f/g está definida para todos los números reales, salvo para x = -3/2, donde la función g se anula.
(f/g)(-1) = 0/1 =0
(f/g)(2) = -3/7
(f/g)(3/2) = (-5/2)/6 = -5/12
Calculando por separado las imágenes de los números mediante las funciones f y g, y después efectuando su cociente, se obtienen los mismos...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Limite
  • limites
  • Límites
  • limites
  • Las limitaciones de los sin límites
  • Limites
  • Limites
  • Limites

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS