Derecho

Solo disponible en BuenasTareas
  • Páginas : 6 (1352 palabras )
  • Descarga(s) : 0
  • Publicado : 17 de septiembre de 2010
Leer documento completo
Vista previa del texto
Historia
Los Elementos de Euclides, que datan del siglo III a. C., contienen ya una aproximación geométrica de la generalización del teorema de Pitágoras: las proposiciones 12 y 13 del libro II, tratan separadamente el caso de un triángulo obtusángulo y el de un triángulo acutángulo. La formulación de la época es arcaica ya que la ausencia de funciones trigonométricas y del álgebra obligó arazonar en términos de diferencias de áreas.[1] Por eso, la proposición 12 utiliza estos términos:
«En los triángulos obtusángulos, el cuadrado del lado opuesto al ángulo obtuso es mayor que los cuadrados de los lados que comprenden el ángulo obtuso en dos veces el rectángulo comprendido por un lado de los del ángulo obtuso sobre el que cae la perpendicular y la recta exterior cortada por laperpendicular, hasta el ángulo obtuso.»
Euclides, Elementos.[2]
Siendo ABC el triángulo, cuyo ángulo obtuso está en C, y BH la altura respecto del vértice B (cf. Fig. 2 contigua), la notación moderna permite formular el enunciado así:

Fig. 2 - Triángulo ABC con altura BH.

Faltaba esperar la trigonometría árabe-musulmana de la Edad Media para ver al teorema evolucionar a su forma y en sualcance: el astrónomo y matemático al-Battani generalizó el resultado de Euclides en la geometría esférica a principios del siglo X, lo que permitió efectuar los cálculos de la distancia angular entre el Sol y la Tierra. Fue durante el mismo período cuando se establecieron las primeras tablas trigonométricas, para las funciones seno y coseno. Eso permitió a Ghiyath al-Kashi, matemático de la escuela deSamarcanda, de poner el teorema bajo una forma utilizable para la triangulación durante el siglo XV. La propiedad fue popularizada en occidente por François Viète quien, al parecer, lo redescubrió independientemente.
Fue a finales del siglo XVII cuando la notación algebraica moderna, aunada a la notación moderna de las funciones trigonométricas introducida por Euler en su libro Introductio inanalysin infinitorum, permitieron escribir el teorema bajo su forma actual, extendiéndose el nombre de teorema (o ley) del coseno.]

TEOREMA DEL SENO
En todo triángulo se da la siguiente relación entre la longitud de sus lados a, b y c y el seno de sus respectivos ángulos opuestos A, B y C

Demostración

El teorema de los senos establece que a/sin(A) es constante.
Dado el triángulo ABC,denotamos por O su circuncentro y dibujamos su circunferencia circunscrita. Prolongando el segmento BO hasta cortar la circunferencia, se obtiene un diámetro BP.
Ahora, el triángulo PBC es recto, puesto que BP es un diámetro, y además los ángulos A y P son iguales, porque ambos son ángulos inscritos que abren el segmento BC (Véase definición de arco capaz). Por definición de la funcióntrigonométrica seno, se tiene

donde R es el radio de la circunferencia. Despejando 2R obtenemos:

Repitiendo el procedimiento con un diámetro que pase por A y otro que pase por C, se llega a que las tres fracciones tienen el mismo valor 2R y por tanto son iguales.
La conclusión que se obtiene suele llamarse teorema de los senos generalizado y establece:
Para un triángulo ABC donde a, b, c son loslados opuestos a los ángulos A, B, C respectivamente, si R denota el radio de la circunferencia circunscrita, entonces: |
Puede enunciarse el teorema de una forma alternativa:
En un triángulo, el cociente entre cada lado y el seno de su ángulo opuesto es constante e igual al diámetro de la circunferencia circunscrita. |

IDENTIDADES TRIGONOMETRICAS
En matemáticas, las identidadestrigonométricas verificables para cualquier valor permisible de la variable o variables que se consideren (es decir, para cualquier valor que pudieran tomar los ángulos sobre los que se aplican las funciones).
Estas identidades, son útiles siempre que se precise simplificar expresiones que incluyen funciones trigonométricas. Otra aplicación importante es el cálculo de integrales indefinidas de funciones...
tracking img