Derivadas

Solo disponible en BuenasTareas
  • Páginas : 3 (526 palabras )
  • Descarga(s) : 0
  • Publicado : 31 de mayo de 2010
Leer documento completo
Vista previa del texto
Derivada de una función en un punto
La derivada de la función f(x) en el punto x = a es el valor del límite, si existe, de un cociente incremental cuando el incremento de la variable tiende a cero.Hallar la derivada de la función f(x) = 3x2 en el punto x = 2.

Calcular la derivada de la función f(x) = x2 + 4x − 5 en x = 1.

INTERPRETACION GEOMETRICA DE LA DERIVADA

Cuando h tiende a 0,el punto Q tiende a confundirse con el P. Entonces la recta secante tiende a ser la recta tangente a la función f(x) en P, y por tanto el ángulo α tiende a ser β.

La pendiente de la tangente a lacurva en un punto es igual a la derivada de la función en ese punto.
mt = f'(a)
Dada la parábola f(x) = x2, hallar los puntos en los que la recta tangente es paralela a la bisectriz del primercuadrante.
La bisectriz del primer cuadrante tiene como ecuación y = x, por tanto su pendiente es m = 1.
Como las dos rectas son paralelas tendrán la misma pendiente, así que:
f'(a) = 1.
Porque lapendiente de la tangente a la curva es igual a la derivada en el punto x = a.

FUNCION DERIVADA

La función derivada de una función f(x) es una función que asocia a cada número real su derivada, siexiste. Se denota por f'(x).

Calcular la función derivada de f(x) = x2 − x + 1.

Hallar f'(−1), f'(0) y f'(1)
f'(−1) = 2(−1) − 1 = −3
f'(0) = 2(0) − 1 = −1
f'(1) = 2(1) − 1 = 1
DERIADASLATERALES

Derivada por la izquierda

Derivada por la derecha

Una función es derivable en un punto si, y sólo si, es derivable por la izquierda y por la derecha en dicho punto y las derivadaslaterales coinciden.

Derivada de las funciones a trozos
En las funciones definidas a trozos es necesario estudiar las derivadas laterales en los puntos de separación de los distintos trozos.
Estudiarla derivabilidad de la función f(x) = |x|.

Puesto que las derivadas laterales en x = 0 son distintas, la función no es derivable en dicho punto.

Las derivada laterales no coinciden en los picos...
tracking img