Ecuaciones expoernciales

Solo disponible en BuenasTareas
  • Páginas : 3 (578 palabras )
  • Descarga(s) : 0
  • Publicado : 31 de octubre de 2011
Leer documento completo
Vista previa del texto
ECUACIONES LOGARÍTMICAS Y EXPONENCIALES
1.- Resolver las ecuaciones exponenciales: a) a x = a 24 b) a x ( x − 2) = a x c) 6 x ( x −1) = 36

( ) ( )
x

6

d) 13x = 371293 e) 100x = 0,0001 f) 38 x = 262144

g) 35x + 2 = 6561 2 1 h) 5 x − 5 x = 625 i) 3x + 9x – 1 = 4

2.- Resolver las siguientes ecuaciones exponenciales: a) b) c) d) e) 2x+1 – 5 · 2x + 3 = 0 9x – 90 · 3x + 729 = 0 36x –42 · 6x + 216 = 0 2x + 2x + 1 + 2x + 2 = 7 2x + 2x + 1 + 2x – 2 + 2x – 3 = 960 f) 2x + 2 + 4x – 320 = 0 g) 9x + 1 – 2 · 3x + 3 + 81 = 0 x 1 x+3 h) 4 =   2 i) 3x
2

+1

− 3x
x 3 1 4

2−1

= 216

j) 4x = 8 + 2 k) 25 x
2



= 52x – 1

3.- Resolver las siguientes ecuaciones logarítmicas: a) log x – log 36 = 3 1 b) log x – log 5 = 2 c) log (3x + 1) – log (2x – 3) = 1 – log5 d) log (2x + 1)2 + log (3x – 4)2 = 2 e) log 3x + 10 – log x + 2 = 1 – log 5 log (16 − x 2 ) f) =2 log (3x − 4) g) log (x + 1) – log x = log x

4.- Resuelve los siguientes sistemas de ecuacioneslogarítmicas: log x + log y = 7 a)  log x − log y = 3 log x 2 + log y 3 = 6  b)  log x 2 + log y 2 = 2   x + y = 110 c)  log x + log y = 3 log x + log y = 30 e)   x + y = 60 x − y = 8 f) log 2 x = 7 − log 2 y  x − y = 25 g)  log y = log x − 1

log 2 x + log 2 y = 7 d)  2 log 2 x − log 2 y = 2

log ( x + y ) + log ( x − y) = log 44 h)  x y 11 e · e = e 2 · log x − 2 ·log y = 1 i)  log x + log y = 3

5.- Resuelve los siguientes sistemas de ecuaciones exponenciales:
y  x 3 + 3 = 90 a)  x + y 3 = 729  y  x 3 + 3 = 90 b)  x + y 3 = 729 

 x + y =493 7 c)  x − y 7 = 49  y  x 2 + 2 = 24 d)  x + y 2 = 128 

6.- La fórmula que se utiliza para el interés continuo es CF = CI · e r t, siendo CF el capital final, CI el capital inicial, r elinterés continuo y t el tiempo. (En el interés continuo se supone que se actualizan los intereses a cada instante). Calcula lo que producen 100000 euros a interés continuo del 30 % anual el 3 años....
tracking img