Estadistica no parametrica

Solo disponible en BuenasTareas
  • Páginas : 11 (2505 palabras )
  • Descarga(s) : 7
  • Publicado : 17 de agosto de 2010
Leer documento completo
Vista previa del texto
Estadística no paramétrica
La estadística no paramétrica es una rama de la estadística que estudia las pruebas y modelos estadísticos cuya distribución subyacente no se ajusta a los llamados criteriosparamétricos. Su distribución no puede ser definida a priori, pues son los datos observados los que la determinan. La utilización de estos métodos se hace recomendable cuando no se puede asumir quelos datos se ajusten a una distribución conocida, cuando el nivel de medida empleado no sea, como mínimo, de intervalo.
Las principales pruebas no paramétricas son las siguientes:
Prueba χ² de Pearson
Prueba binomial
Prueba de Anderson-Darling
Prueba de Cochran
Prueba de Cohen kappa
Prueba de Fisher
Prueba de Friedman
Prueba de Kendall
Prueba de Kolmogórov-Smirnov
Prueba deKruskal-Wallis
Prueba de Kuiper
Prueba de Mann-Whitney o prueba de Wilcoxon
Prueba de McNemar
Prueba de la mediana
Prueba de Siegel-Tukey
Coeficiente de correlación de Spearman
Tablas de contingencia
Prueba de Wald-Wolfowitz
Prueba de los signos de Wilcoxon
La mayoría de estos test estadísticos están programados en los paquetes estadísticos más frecuentes, quedando para el investigador, simplemente,la tarea de decidir por cuál de todos ellos guiarse o qué hacer en caso de que dos test nos den resultados opuestos. Hay que decir que, para poder aplicar cada uno existen diversas hipótesis nulas que deben cumplir nuestros datos para que los resultados de aplicar el test sean fiables. Esto es, no se puede aplicar todos los test y quedarse con el que mejor convenga para la investigación sinverificar si se cumplen las hipótesis necesarias. La violación de las hipótesis necesarias para un test invalidan cualquier resultado posterior y son una de las causas más frecuentes de que un estudio sea estadísticamente incorrecto. Esto ocurre sobre todo cuando el investigador desconoce
la naturaleza interna de los test y se limita a aplicarlos sistemáticamente.
Prueba χ²
(Redirigido desde Pruebaχ² de Pearson)
En estadística y estadística aplicada se denomina prueba χ² (pronunciado como "ji-cuadrado" y a veces como "chi-cuadrado") a cualquier prueba en la que el estadístico utilizado sigue una distribución χ² si la hipótesis nula es cierta. Algunos ejemplos de pruebas χ² son:
La prueba χ² de Pearson, la cual tiene numerosas aplicaciones:
La prueba χ² de frecuencias
La prueba χ² deindependencia
La prueba χ² de bondad de ajuste
La prueba χ² de Pearson con corrección por continuidad o corrección de Yates
La prueba de Bartlett de homogeneidad de varianzas

[editar]Prueba χ² de Pearson
La prueba χ² de Pearson es considerada como una prueba no paramétrica que mide la discrepancia entre una distribución observada y otra teórica (bondad de ajuste), indicando en qué medida lasdiferencias existentes entre ambas, de haberlas, se deben al azar en el contraste de hipótesis. También se utiliza para probar la independencia de dos variables entre sí, mediante la presentación de los datos en tablas de contingencia.
La fórmula que da el estadístico es la siguiente:

Cuanto mayor sea el valor de χ2, menos verosímil es que la hipótesis sea correcta. De la misma forma, cuantomás se aproxima a cero el valor de chi-cuadrado, más ajustadas están ambas distribuciones.
Los grados de libertad gl vienen dados por :
gl= (r-1)(k-1). Donde r es el número de filas y k el de columnas.
Criterio de decisión:
Se acepta H0 cuando . En caso contrario se rechaza.
Donde t representa el valor proporcionado por las tablas, según el nivel de significación estadística elegido.

Pruebade Anderson-Darling
En estadística, la prueba de Anderson-Darling es una prueba no paramétrica sobre si los datos de una muestra provienen de una distribución específica. La fórmula para el estadístico A determina si los datos  (observar que los datos se deben ordenar) vienen de una distribución con función acumulativa F
A2 = − N − S
donde

El estadístico de la prueba se puede entonces...
tracking img