Funcion Trigonometrica

Páginas: 6 (1407 palabras) Publicado: 6 de noviembre de 2012
Una identidad trigonométrica es una igualdad entre expresiones que contienen funciones trigonométricas y es válida para todos los valores del ángulo en los que están definidas las funciones (y las operaciones aritméticas involucradas).
Notación: se define sen2α como (sen α)2. Lo mismo aplica para las demás funciones trigonométricas.
Relaciones básicas
Relación pitagórica | |
Identidad dela razón | |
De estas dos identidades, se puede extrapolar la siguiente tabla. Sin embargo, nótese que estas ecuaciones de conversión pueden devolver el signo incorrecto (+ ó −). Por ejemplo, si la conversión propuesta en la tabla indica que , aunque es posible que . Para obtener la única respuesta correcta se necesitará saber en qué cuadrante está θ.
Funciones trigonométrica en función de lasotras cinco. |
En términos de | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
De las definiciones de las funciones trigonométricas:

Son más sencillas de probar en la circunferencia trigonométrica o goniométrica (que tiene radio igual a 1):

A veces es importante saber que cualquiercombinación lineal de una serie de ondas senoidales que tienen el mismo período pero están desfasadas, es también una onda senoidal del mismo período pero con un desplazamiento de fase diferente. Dicho de otro modo:

Es llamada identidad trigonométrica fundamental, y efectuando sencillas operaciones permite encontrar unas 24 identidades más, muy útiles para problemas introductorios del tipoconocido el valor de la función seno, obtenga el valor de las restantes (sin tabla ni calculadora).
Por ejemplo, si se divide ambos miembros de "sen² + cos² = 1" por cos², se obtiene:

Ahora, dividiendo ambos miembros de la misma expresión por el sen², se obtiene:

Entonces puede expresarse la función seno según alguna otra conocida:

Ejemplo 2:

Utilizando la identidad

Entonces:

Perosustituimos en :

Realizamos las operaciones necesarias y queda:

Entonces los cosenos se hacen 1 y queda

Y queda demostrado.
El resto de las funciones se realiza de manera análoga.
Teoremas de la suma y diferencia de ángulos
Pueden demostrarse según la Fórmula de Euler o mediante la proyección de ángulos consecutivos. La identidad de la tangente surge del cociente entre coseno yseno, y las restantes de la recíproca correspondiente.

De lo que se sigue para determinados ángulos suplementarios:

Para ángulos complementarios:

Para ángulos opuestos:

Identidades del ángulo múltiple
Si Tn es el n-simo Polinomio de Chebyshev entonces

Fórmula de De Moivre:

Identidades del ángulo doble, triple y medio
Pueden obtenerse remplazándolo y por x (o sea ) en lasidentidades anteriores, y usando el teorema de Pitágoras para los dos últimos (a veces es útil expresar la identidad en términos de seno, o de coseno solamente), o bien aplicando la Fórmula de De Moivre cuando .
Fórmula del ángulo doble |
| | | |
Fórmula del ángulo triple |
| | | |
Fórmula del ángulo medio |
| | | |
Producto infinito de Euler

Identidades para la reducción deexponentes
Resuelve las identidades tercera y cuarta del ángulo doble para cos²(x) y sin²(x).
Seno | | |
Coseno | | | |
Otros | | | |
Paso de producto a suma
Puede probarse usando el teorema de la suma para desarrollar los segundos miembros.

Deducción de la identidad

Sabemos por el teorema de la suma y la resta que:

Si separamos la suma de la resta quedan entonces los dosposibles casos:
1):
2):
Si tomamos la ecuación 1) y despejamos cos(x)cos(y) nos queda que:
3):
Y si sumamos el miembro de la derecha de la ecuación 2) al miembro izquierdo de la ecuación 3), y para mantener la igualdad se suma el lado izquierdo de la ecuación 2) en el lado derecho de la ecuación 3) (al sumar la misma cantidad a ambos miembros de la ecuación la nueva ecuación sigue siendo...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Funciones trigonometricas
  • Funciones Trigonometricas
  • Funciones Trigonometricas
  • Funciones Trigonometricas
  • funciones trigonométricas
  • Funciones trigonometricas
  • Funciones Trigonometricas
  • funciones trigonométricas

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS