Medidas de distribucion

Solo disponible en BuenasTareas
  • Páginas : 7 (1519 palabras )
  • Descarga(s) : 0
  • Publicado : 30 de noviembre de 2010
Leer documento completo
Vista previa del texto
Medidas de Distibución - Asimetría y Curtosis
Las medidas de distribución nos permiten identificar la forma en que se separan o aglomeran los valores de acuerdo a su representación gráfica. Estas medidas describen la manera como los datos tienden a reunirse de acuerdo con la frecuencia con que se hallen dentro de la información. Su utilidad radica en la posibilidad de identificar lascaracterísticas de la distribución sin necesidad de generar el gráfico. Sus principales medidas son la Asimetría y la Curtosis.

1. ASIMETRÍA
Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes [Fig.1], cada uno de los cuales define de forma concisa como están distribuidos los datosrespecto al eje de asimetría. Se dice que la asimetría es positiva cuando la mayoría de los datos se encuentran por encima del valor de la media aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce como asimetría negativa cuando la mayor cantidad de datos se aglomeran en los valores menores que la media.Figura 1 El Coeficiente de asimetría, se representa mediante la ecuación matemática,

Donde (g1) representa el coeficiente de asimetría de Fisher, (Xi) cada uno de los valores, ( ) la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta ecuación se interpretan: (g1 = 0): Se acepta que la distribución es Simétrica, es decir, existe aproximadamente la misma cantidad devalores a los dos lados de la media. Este valor es difícil de conseguir por lo que se tiende a tomar los valores que son cercanos ya sean positivos o negativos (± 0.5).
Jesús Ponce Mariños 1

(g1 > 0): La curva es asimétricamente positiva por lo que los valores se tienden a reunir más en la parte izquierda que en la derecha de la media. (g1 < 0): La curva es asimétricamente negativa por lo quelos valores se tienden a reunir más en la parte derecha de la media. Desde luego entre mayor sea el número (Positivo o Negativo), mayor será la distancia que separa la aglomeración de los valores con respecto a la media

2. CURTOSIS
Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemosidentificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica).

Figura 2 Para calcular el coeficiente de Curtosis se utiliza la ecuación:

Donde (g2) representa el coeficiente de Curtosis, (Xi) cada uno de los valores, ( ) la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de estafórmula se interpretan: (g2 = 0) la distribución es Mesocúrtica: Al igual que en la asimetría es bastante difícil encontrar un coeficiente de Curtosis de cero (0), por lo que se suelen aceptar los valores cercanos (± 0.5 aprox.). (g2 > 0) la distribución es Leptocúrtica (g2 < 0) la distribución es Platicúrtica Cuando la distribución de los datos cuenta con un coeficiente de asimetría (g1 = ±0.5) y uncoeficiente de Curtosis de (g2 = ±0.5), se le denomina Curva Normal. Este criterio es de suma importancia ya que para la mayoría de los procedimientos de la estadística de inferencia se requiere que los datos se distribuyan normalmente. La principal ventaja de la distribución normal radica en el supuesto que el 95% de los valores se encuentra dentro de una distancia de dos desviaciones estándarde la media aritmética (Fig.3); es decir, si tomamos la media y le sumamos dos veces la

Jesús Ponce Mariños

2

desviación y después le restamos a la media dos desviaciones, el 95% de los casos se encontraría dentro del rango que compongan estos valores.

Figura 3 Desde luego, los conceptos vistos hasta aquí, son sólo una pequeña introducción a las principales medidas de Estadística...
tracking img