Metodo de elementos finitos

Solo disponible en BuenasTareas
  • Páginas : 32 (7847 palabras )
  • Descarga(s) : 0
  • Publicado : 19 de diciembre de 2010
Leer documento completo
Vista previa del texto
Método de los elementos finitos

El método de los elementos finitos (MEF en castellano o FEM en inglés) es un método numérico general para la aproximación de soluciones de ecuaciones diferenciales parciales muy utilizado en diversos problemas de ingeniería y física.
El MEF está pensado para ser usado en computadoras y permite resolver ecuaciones diferenciales asociadas a un problema físicosobre geometrías complicadas. El MEF se usa en el diseño y mejora de productos y aplicaciones industriales, así como en la simulación de sistemas físicos y biológicos complejos. La variedad de problemas a los que puede aplicarse ha crecido enormemente, siendo el requisito básico que las ecuaciones constitutivas y ecuaciones de evolución temporal del problema a considerar sean conocidas de antemano.|
Breve reseña histórica
El Método de Elementos Finitos (MEF) fue al principio desarrollado en 1943 por R. Courant, quien utilizó el método de Ritz de análisis numérico y minimización de las variables de cálculo para obtener soluciones aproximadas a un sistema de vibración. Poco después, un documento publicado en 1956 por M. J. Turner, R. W. Clough, H. C. Martin, y L. J. Topp estableció unadefinición más amplia del análisis numérico [1] . El documento se centró en “la rigidez y deformación de estructuras complejas”. Con la llegada de los primeros ordenadores instaura el cálculo matricial de estructuras. Éste parte de la discretización de la estructura en elementos lineales tipo barra de los que se conoce su rigidez frente a los desplazamientos de sus nodos. Se plantea entonces unsistema de ecuaciones resultado de aplicar las ecuaciones de equilibrio a los nodos de la estructura. Este sistema de ecuaciones se esquematiza de la siguiente manera:
(*)
Donde las incógnitas son los desplazamientos en los nodos (vector u) que se hallan a partir de las "fuerzas" o "solicitaciones" en los nodos (vector ) y de la rigidez de las barras (matriz de rigidez ). Conocidos dichosdesplazamientos es posible determinar los esfuerzos en las barras. La solución obtenida es exacta.
Uso práctico del método hacia 1950
Cuando se produce la llegada de los primeros equipos de cómputo en la década de 1950, el cálculo de estructuras se encontraba en un punto en el que los métodos de cálculo predominantes consistían en método iterativos (métodos de Cross y Kani) que se realizaban de maneramanual y, por tanto, resultaban bastante tediosos. El cálculo de una estructura de edificación de varios pisos, por ejemplo, podía llevar varias semanas, lo cual suponía un coste sustancial de tiempo en detrimento de la posibilidad de invertir este en la optimización de la estructura.
La llegada de la computadora permitió el resurgimiento del método de los desplazamientos ya conocidos en siglosanteriores (Navier, Lagrange, Cauchy), pero que eran difíciles de aplicar dado que al final conducían a la resolución de enormes sistemas de ecuaciones inabordables desde el punto de vista manual.
De 1960 a 1970
Cuando las aplicaciones prácticas de elementos finitos crecieron en tamaño, los requerimientos de tiempo de cálculo y memoria de los ordenadores creció. En ese punto el desarrollo dealgoritmos más eficientes se volvió importante. Para la resolución de los sistemas de ecuaciones se potencia el estudio de la adaptabilidad de los algoritmos ya conocidos (Gauss, Cholesky, Crout, Gradiente conjugado, etc). El ahorro de tiempo es impensable y con ello el uso del método matricial se extiende. Este desarrollo se hace especialmente notable en estructuras de edificación donde ladiscretización de los pórticos en barras, es prácticamente inmediata a partir de las vigas y los pilares.
Sin embargo, y a pesar de desarrollarse modelizaciones de elementos superficiales mediante barras (losas con emparrillados, elementos curvos mediante aproximaciones de elementos rectos, etc.), se plantean grandes dificultades ante estructuras continuas (superficies y volúmenes) y con geometrías...
tracking img