Metodo de falsa pósicion

Solo disponible en BuenasTareas
  • Páginas : 6 (1387 palabras )
  • Descarga(s) : 0
  • Publicado : 10 de octubre de 2010
Leer documento completo
Vista previa del texto
Método de la falsa posición
El método de la falsa posición pretende conjugar la seguridad del método de la bisección con la rapidez del método de la secante. Este método, como en el método de la bisección, parte de dos puntos que rodean a la raíz f(x) = 0, es decir, dos puntos x0 y x1tales que f(x0)f(x1) < 0. La siguiente aproximación, x2, se calcula como la intersección con el eje X de larecta que une ambos puntos (empleando la ecuación (35) del método de la secante). La asignación del nuevo intervalo de búsqueda se realiza como en el método de la bisección: entre ambos intervalos, [x0,x2] y [x2,x1], se toma aquel que cumpla f(x)f(x2) < 0. En la figura (9) se representa geométricamente este método.
Figure: Representación geométrica del método de la falsa posición.[scale=0.9]eps/falpos
La elección guiada del intervalo representa una ventaja respecto al método de la secante ya que inhibe la posibilidad de una divergencia del método. Por otra parte y respecto al método de la bisección, mejora notablemente la elección del intervalo (ya que no se limita a partir el intervalo por la mitad).
Figure: Modificación del método de la falsa posición propuesta por Hamming.La aproximación a la raíz se toma a partir del punto de intersección con el eje X de la recta que une los puntos ( x0,f(x0)/2) y (x1,f(x1)) si la función es convexa en el intervalo (figura a) o bien a partir de la recta que une los puntos (x0,f(x0)) y (x1, f(x1)/2) si la función es cóncava en el intervalo (figura b). [scale=0.9]eps/hamming
Sin embargo, el método de la falsa posición tiene unaconvergencia muy lenta hacia la solución. Efectivamente, una vez iniciado el proceso iterativo, uno de los extremos del intervalo tiende a no modificarse (ver figura (9)). Para obviar este problema, se ha propuesto una modificación del método, denominada método de Hamming. Según este método, la aproximación a una raíz se encuentra a partir de la determinación del punto de intersección con el eje Xde la recta que une los puntos ( x0,f(x0)/2) y (x1,f(x1)) si la función es convexa en el intervalo o bien a partir de la recta que une los puntos (x0,f(x0)) y (x1, f(x1)/2) si la función es cóncava en el intervalo. En la figura (10) se representa gráficamente el método de Hamming.

Método de la Bisección
El métodode la bisección o corte binario es un método de búsqueda incremental que divideel intervalo siempre en 2. Si la función cambia de signo sobre un intervalo, se evalúa el valor de la función en el punto medio. La posición de la raíz se determina situándola en el punto medio del subintervalo donde exista cambio de signo. El proceso se repite hasta mejorar la aproximación.
Algoritmo
Paso 1
Elegir los valores iniciales Xa y Xb, de tal forma de que la función cambie de signo:f(Xa)f(Xb) < 0
Paso 2
La primera aproximación a la raíz se determina con la fórmula del punto medio de esta forma:

Paso 3
Realizar las siguientes evaluaciones para determinar el intervalo de la raíz:
a. Si f(Xa)f(Xb) < 0, entonces la solución o raíz está entre Xa y Xpm, y Xb pasa a ser el punto medio (Xpm).
b. Si f(Xa)f(Xb) > 0, entonces la solución o raíz está fuera delintervalo entre Xa y el punto medio, y Xa pasa a ser el punto medio (Xpm).
Paso 4
Si f(Xa)f(Xb) = 0 ó Error = | Xpm – Xpm – 1 | < Tolerancia
Donde Xpm es el punto medio de la iteración actual y Xpm – 1 es el punto medio de la iteración anterior.
Al cumplirse la condición del Paso 4, la raíz o solución es el último punto medio que se obtuvo.
Para el error relativo porcentual se tiene lasiguiente fórmula:

Orden de convergencia
en análisis numérico la velocidad con la cual una sucesión converge a su límite es llamada orden de convergencia. Este concepto es, desde el punto de vista práctico, muy importante si necesitamos trabajar con secuencias de sucesivas aproximaciones de un método iterativo. Incluso puede hacer la diferencia entre necesitar diez o un millón de iteraciones....
tracking img