# Metodos matematicos para fisicos - arfken

Solo disponible en BuenasTareas
• Páginas : 1214 (303389 palabras )
• Descarga(s) : 0
• Publicado : 7 de abril de 2010

Vista previa del texto
Vector Identities
A = Ax x + Ayy + Azz, ˆ ˆ ˆ
2 A2 = Ax + A2 + A2 , y z

A · B = Ax Bx + Ay By + Az Bz

A×B =

Ay By Ax

Az Bz Ay By Cy

x− ˆ Az

Ax Bx

Az Bz

y+ ˆ Az Bz

Ax Bx

Ay By

z ˆ

A · (B × C) = Bx Cx

Ay Bz = C x By Cz
k

− Cy

Ax Bx

Az Bz

+ Cz

Ax Bx

Ay By

A × (B × C) = B A · C − C A · B,

εijk ε pqk = δip δ jq − δiq δ jp

VectorCalculus
F = −∇V (r) = − r dV dV = −ˆ r , r dr dr ∇ · (r f (r)) = 3 f (r) + r df , dr

∇ · (rr n−1 ) = (n + 2)r n−1 ∇(A · B) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A) ∇ · (SA) = ∇S · A + S∇ · A, ∇ · (∇ × A) = 0, ∇×r = 0 ∇ × (A × B) = A ∇ · B − B ∇ · A + (B · ∇)A − (A · ∇)B, ∇ × (∇ × A) = ∇(∇ · A) − ∇2 A ∇ · B d3 r =
V S

∇ · (A × B) = B · (∇ × A) − A · (∇ × B) ∇ × (r f (r)) = 0,

∇ ×(SA) = ∇S × A + S∇ × A,

B · da,

(Gauss),
S

(∇ × A) · da =

A · dl,

(Stokes) (Green)

(φ∇2 ψ − ψ∇2 φ)d3r =
V S

(φ∇ψ − ψ∇φ) · da,

∇2

1 = −4π δ(r), r

δ(ax) =

1 δ(x), |a| 1 2π

δ( f (x)) =
∞ −∞

δ(x − xi ) , | f (xi )| i, f (x )=0, f (x )=0
i i

δ(t − x) =

eiω(t−x) dω,

δ(r) = δ(x − t) =

d3 k −ik·r e , (2π )3
∞ n=0 ∗ ϕn (x)ϕn(t)

Curved OrthogonalCoordinates
Cylinder Coordinates q1 = ρ, q2 = ϕ, q3 = z; h1 = hρ = 1, h2 = hϕ = ρ, h3 = hz = 1, r = xρ cos ϕ + yρ sin ϕ + z z ˆ ˆ ˆ Spherical Polar Coordinates q1 = r, q2 = θ, q3 = ϕ; h1 = hr = 1, h2 = hθ = r, h3 = hϕ = r sin θ, r = xr sin θ cos ϕ + yr sin θ sin ϕ + z r cos θ ˆ ˆ ˆ dr =
i

hi dqi qi , ˆ

A=
i

A i qi , ˆ

A·B=
i

q1 ˆ A1 A i Bi, A × B = B1 F · dr =
L i

q2 ˆ A2 B2q3 ˆ A3 B3

f d3 r =
V

f (q1 , q2 , q3 )h1 h 2 h 3 dq1 dq2 dq3 B1 h 2 h 3 dq2 dq3 + qi ˆ
i

Fi hi dqi

B · da =
S

B 2 h1 h 3 dq1 dq3 +

B 3 h1 h 2 dq1 dq2 ,

∇V = ∇·F = ∇2 V =

1 ∂V , hi ∂qi

1 ∂ ∂ ∂ (F1 h 2 h 3 ) + (F2 h1 h 3 ) + (F3 h1 h 2 ) h1 h 2 h 3 ∂q1 ∂q2 ∂q3 ∂ h 2h 3 ∂ V 1 h1 h 2 h 3 ∂q1 h1 ∂q1 h1 q1 ˆ h 2 q2 ˆ
∂ ∂q2 ∂ ∂q1

+ h 3 q3 ˆ
∂ ∂q3

∂ h1 h 3 ∂ V ∂q2h 2 ∂q2

+

∂ h 2 h1 ∂ V ∂q3 h 3 ∂q3

1 ∇×F = h1 h 2 h 3

h1 F1

h 2 F2

h 3 F3

Mathematical Constants e = 2.718281828,

π = 3.14159265,

ln 10 = 2.302585093,

1 rad = 57.29577951 , 1 = 0.0174532925 rad, 1 1 1 γ = lim 1 + + + · · · + − ln(n + 1) = 0.577215661901532 n→∞ 2 3 n (Euler-Mascheroni number) 1 1 1 1 B1 = − , B2 = , B4 = B8 = − , B6 = , . . . (Bernoulli numbers)2 6 30 42

Essential Mathematical Methods for Physicists

Essential Mathematical Methods for Physicists

Hans J. Weber
University of Virginia Charlottesville, VA

George B. Arfken
Miami University Oxford, Ohio

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo

Sponsoring Editor Production Editor Editorial Assistant Marketing ManagerCover Design Printer and Binder

Barbara Holland Angela Dooley Karen Frost Marianne Rutter Richard Hannus Quebecor