Metodos

Solo disponible en BuenasTareas
  • Páginas : 6 (1454 palabras )
  • Descarga(s) : 9
  • Publicado : 6 de agosto de 2010
Leer documento completo
Vista previa del texto
MÉTODO DIFERENCIAS DIVIDIDAS

1.- y = cos(x), x = pi/4, h = pi/12:

* function y=deratr(f,x)
%subprograma para hallar la primera derivada
%con aproximación numérica
%hacia atrás 0(h).

% Derivada, valor verdadero:
V=-sin(x);
% Valor de h:
h=pi/12;
% Derivada, valor aproximado:
y=(feval(f,x)-feval(f,x-h))/h;
Va=y;
% Error relativo porcentual verdadero:
Et=(V-Va)/Va*100
End

>>deratr(inline('cos(x)'),pi/4)

Et =
16.4874
ans =
-0.6070

* function y=deradel(f,x)
%subprograma para hallar la primera derivada
%con aproximación numérica
%hacia adelante 0(h).

% Derivada, valor verdadero:
V=-sin(x);
% Valor de h:
h=pi/12;
% Derivada, valor aproximado:
y=(feval(f,x+h)-feval(f,x))/h;
Va=y;
% Error relativo porcentual verdadero:
Et=abs((V-Va)/Va*100end
>>
deradel(inline('cos(x)'),pi/4)

Et =
10.6161
ans =
-0.7911

* function y=centrada(f,x)
%%subprograma para hallar la primera derivada
%con aproximación numérica
%central 0(h^2).

% Derivada, valor verdadero:
V=-sin(x);
% Valor de h:
h=pi/12;
% Derivada, valor aproximado:
y=(feval(f,x+h)-feval(f,x-h))/(2*h);
Va=y;
% Error relativo porcentual verdadero:Et=abs((V-Va)/Va)*100
end

>>
centrada(inline('cos(x)'),pi/4)

Et =
1.1515
ans =
-0.6991

* function y=deradel2(f,x)
%Subprograma para hallar la primera derivada
%con aproximación numérica
%hacia adelante 0(h^2):

% Derivada, valor verdadero:
V=-sin(x);
% valor de h:
h=pi/12;
% Derivada, valor aproximado:
y=(-feval(f,x+2*h)+4*feval(f,x+h)-3*feval(f,x))/(2*h);
Va=y;
% Errorrelativo porcentual verdadero:
Et=abs((V-Va)/Va)*100
end

>>
deradel2(inline('cos(x)'),pi/4)

Et =
2.6041
ans =
-0.7260

* function y = deratr2(f,x)
%subprograma para hallar la primera derivada
%con aproximación numérica
%hacia atrás 0(h^2)

% Derivada, valor verdadero:
V=-sin(x);
% Valor de h:
h=pi/12;
% Derivada, Valor aproximado:y=(3*feval(f,x)-4*feval(f,x-h)+feval(f,x-2*h))/(2*h);
Va=y;
%Error relativo porcentual verdadero:
Et=abs((V-Va)/Va)*100
end

deratr2(inline('cos(x)'),pi/4)

Et =
1.7554
ans =
-0.7197

* function y=centrada2(f,x)
%subprograma para hallar la primera derivada
%con aproximación numérica
%central 0(h^4).

% Derivada, Valor verdadero:
V=-sin(x);
% Valor de h:
h=pi/12;
% Derivada, Valor aproximadoy=(-feval(f,x+2*h)+8*feval(f,x+h)-8*feval(f,x-h)-feval(f,x-2*h))/(12*h);
Va=y;
% Error relativo porcentual verdadero:
Et=abs((V-Va)/Va)*100

end

>>
centrada2(inline('cos(x)'),pi/4)

Et =
0.0155
ans =
-0.7070

2.- y = log(x), x = 25, h = 2:

* function y=deratr(f,x)
%subprograma para hallar la primera derivada
%con aproximación numérica
%hacia atrás 0(h).

% Derivada, valor verdadero:V=log10(exp(1))/x;
% Valor de h:
h=2;
% Derivada, valor aproximado:
y=(feval(f,x)-feval(f,x-h))/h;
Va=y;
% Error relativo porcentual verdadero:
Et=abs((V-Va)/Va)*100
end

>>
deratr(inline('log10(x)'),25)

Et =
4.0556
ans =
0.0181

* function y=deradel(f,x)
%subprograma para hallar la primera derivada
%con aproximación numérica
%hacia adelante 0(h).

% Derivada, valorverdadero:
V=log10(exp(1))/x;
% Valor de h:
h=2;
% Derivada, valor aproximado:
y=(feval(f,x+h)-feval(f,x))/h;
Va=y;
% Error relativo porcentual verdadero:
Et=abs((V-Va)/Va)*100
end

>>
deradel(inline('log10(x)'),25)

Et =
3.9487
ans =
0.0167

* function y=centrada(f,x)
%%subprograma para hallar la primera derivada
%con aproximación numérica
%central 0(h^2).

%Derivada, valor verdadero:
V=log10(exp(1))/x;
% Valor de h:
h=2;
% Derivada, valor aproximado:
y=(feval(f,x+h)-feval(f,x-h))/(2*h);
Va=y;
% Error relativo porcentual verdadero:
Et=abs((V-Va)/Va)*100
end

>>
centrada(inline('log10(x)'),25)

Et =
0.2137
ans =
0.0174

* function y = deratr2(f,x)
%subprograma para hallar la primera derivada
%con aproximacion numerica
%hacia...
tracking img