Origen de la geometria

Solo disponible en BuenasTareas
  • Páginas : 9 (2032 palabras )
  • Descarga(s) : 0
  • Publicado : 30 de octubre de 2009
Leer documento completo
Vista previa del texto
República Bolivariana de Venezuela.
Ministerio De Educación Superior.
Universidad Nacional Experimental Simón Rodríguez.
Facilitadora: Idaís Rodríguez.
Geometría.


Origen y evolución de la
Geometría.Participantes:
Anahibi Barreto C.I:18.853.370
Ayalis Serrada C.I: 20.449.639

Origen y evolución de la geometría
La historia del origen de la Geometría esmuy similar a la de la Aritmética, siendo sus conceptos más antiguos consecuencia de las actividades prácticas. Los primeros hombres llegaron a formas geométricas a partir de la observación de la naturaleza.
El sabio griego Eudemo de Rodas, atribuyó a los egipcios el descubrimiento de la geometría, ya que, según él, necesitaban medir constantemente sus tierras debido a que las inundaciones delNilo borraban continuamente sus fronteras. Recordemos que, precisamente, la palabra geometría significa medida de tierras.
Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo un valor aproximado de (de 3'1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramosrudimentos de trigonometría y nociones básicas de semejanza de triángulos.
También se tienen nociones geométricas en la civilización mesopotámica, constituyendo los problemas de medida el bloque central en este campo: área del cuadrado, del círculo (con una no muy buena aproximación de (=3), volúmenes de determinados cuerpos, semejanza de figuras, e incluso hay autores que afirman que estacivilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, obviamente, como principio general.
En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron enuna rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1er y 2º grado, problemas prácticos de cálculo y constructivos de laarquitectura, geometría, agrimensura, etc.
Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacenla ecuación a2+b2=c2.
En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la cuadratura de unaserie de áreas (en particular las acotadas por líneas curvas).
Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las...
tracking img