Químico

Páginas: 54 (13415 palabras) Publicado: 11 de noviembre de 2012
Infrared Spectroscopy
Most of us are quite familiar with infrared radiation. We have seen infrared lamps keep food hot and often associate infrared radiation with heat. While the generation of heat is a probable event following the absorption of infrared radiation, it is important to distinguish between the two. Infrared is a form of radiation that can travel through a vacuum while heat isassociated with the motion and kinetic energy of molecules. The concept of heat in a vacuum has no meaning because of the lack of molecules and molecular motion. Infrared spectroscopy is the study of how molecules absorb infrared radiation and ultimately convert it to heat. By examining how this occurs, we will not only learn about how infrared radiation is absorbed, but we will also learn aboutmolecular structure and how the study of infrared spectroscopy can provide information about the structure of organic molecules. An infrared spectrum of a chemical substance, is very much like a photograph of a molecule. However, unlike a normal photograph which would reveal the position of nuclei, the infrared spectrum will only reveal a partial structure. It is the purpose of this narrative to provideyou with the tools necessary to interpret infrared spectra, successfully. In some respects, this process is similar to reading an X-ray of the chest. While most of us could easily identify the gross structural features of the chest such as the ribs, most of us would need some guidance in identifying those features on the X-ray film associated with disease.
In order to interpret infraredspectra, having some idea or model of the physical process involved when a molecule interacts with infrared radiation would be useful. You may recall in introductory chemistry, the discussion of how atoms interact with electromagnetic radiation led to the development of quantum theory and the introduction of quantum numbers. The interaction of infrared radiation with molecules requires a similartreatment. While the use of quantum theory is necessary to explain this interaction, most of us live in a world that appears continuous to us and we do not have much experience discussing phenomena that occur in discrete steps. The discussion that follows will attempt to develop a model of how molecules interact with infrared radiation that is based as much as possible on classical physics. Whennecessary, we will insert the modifications required by quantum mechanics. This model, while perhaps oversimplified, will contain the physical picture that is useful to understand the phenomena and will be correct from a quantum mechanical standpoint.
Let's begin first by considering two isolated atoms, a hydrogen and a bromine atom moving toward each other from a great distance. What do you suppose willhappen once the atoms approach each other and can feel each others presence? The potential energy curve for the H-Br molecule is shown in Figure 1. As the two atoms approach each other notice that the potential energy drops. If we recall that energy must be conserved, what must happen to the kinetic energy? The two atoms must attract each other and accelerate toward each other, thereby increasingtheir kinetic energy. The change in kinetic energy is illustrated by the dotted line in the figure. At some point they will "collide" as indicated by the part of the potential energy curve that rises steeply at small interatomic distances and then the atoms will begin to move away from each other. At this point, we might ask, "Will the molecule of HBr survive the collision"? Unless some energyfrom this system is lost, say by emission of a photon of light or collision by a third body to remove some energy, these are two ships passing in the night. The kinetic energy resulting from the coulombic attraction of the two atoms will exactly equal the drop in potential energy and the two atoms will

Figure 1. The potential (solid line) and kinetic energy (dotted line) of HBr as a function...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Quimica quimica
  • quimicos y quimica
  • Quimica
  • Quimico
  • Quimica
  • Quimica
  • Quimica
  • Quimica

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS