Valores y vectores caracteristicos

Páginas: 11 (2652 palabras) Publicado: 29 de diciembre de 2009
 VALORES CARACTERISTICOS, FORMAS CUADRATICAS Y VECTORES CARACTERISTICOS.
 VALORES Y VECTORES
Sean T: V V una transformación lineal. En muchas aplicaciones es útil encontrar un vector v y un escalar V tal que Tv y v son paralelos. Es decir, se busca un vector v y un escalar tal que
Tv =v (1)
Si v " 0 y satisface (1), entonces se llama un eigenvalor de T y v se llama un eigenvector de Tcorrespondiente al eigenvalor . Si V tiene una dimensión finita, entonces T se puede representar por una matriz AT.
Definición . Eigenvalor y eigenvector. Sea A una matriz de n * n con componentes reales&. El número (real o complejo) se llama eigenvalor de A si existe un vector diferente de cero v en Cn tal que Av = v. (2)
El vector v " 0 se llama eigenvector de A correspondiente al eigenvalor.
* Esta definición es válida si A tiene componentes complejas; pero como las matrices que se manejarán tienen, en su mayoría, componentes reales, la definición es suficiente para nuestros propósitos.
Nota. La palabra “eigen” es la palabra alemana para “propio”. Los eigenvalores también se llaman valores propios o valores característicos y los eigenvectores reciben el nombre de vectores propioso vectores característicos.
Ejemplo 1. Eigenvalores y eigenvectores de una matriz de 2 * 2.
Sea A = 10 -18
* -11
Entonces
A 2 = 10 -18 2 = 2
1 6 -11 1 1
Así, 1 = 1 es un valor propio de A con el correspondiente vector propio v1 = 2
1
De manera similar, A 3 = 10 -18 3 = -6 = -2 3
2 6 -11 2 -4 2
de manera que 2 = -2 es un valor propio de A con el correspondiente vector propio v2 = 3
2
Ejemplo2. Eigenvalores y eigenvectores de la matriz identidad. Sea A = I, entonces para cualquier v " Cn, Av = Iv = v. Así, 1 es el único valor propio de A y todo v " 0 " Cn es un vector propio de I.
Suponga que es un valor propio de A. Entonces existe un vector diferente de cero
x1
V = x2 " 0 tal que Av = v = Iv. Rescribiendo esto se tiene (A - I)v = 0 (3)
:
xn
Sea A una matriz de n * n, la ecuación(3) corresponde a un sistema homogéneo de n ecuaciones con las incógnitas x1, x2, ..., xn. Como se ha supuesto que el sistema tiene soluciones no triviales, se concluye que det (A - I) = 0. Inversamente, si det (A - I) = 0, entonces la ecuación (3) tiene soluciones no triviales y es el valor propio de A. Por otro lado, si det (A - I) " 0, entonces la única solución a (3) es v = 0 de manera que noes un eigenvalor de A.
Procedimiento para calcular valores propios y vectores propios
 Se encuentra p() = det (A - I).
 Se encuentran las raíces 1, 2, . . . , m de p( ) = 0.
 Se resuelve el sistema homogéneo (A - iI)v = 0, correspondiente a cada valor propio i.
Observación 1. Por lo general el paso ii) es el más dificil.
Ejemplo 3. Cálculo de valores y vectores propios. Sea A = 4 2
3 3
4 -2
Entonces det (A - I) = 3 3 - = (4 - )(3 -) - 6 = 2 - 7 + 6 = ( - 1)( - 6) = 0.
Entonces los valores propios de A son 1 = 1 y 2 = 6. Para 1 = 1 se resuelve (A - I)v = 0 o
3 2 x1 = 0
3 2 x2 0
Es claro que cualquier vector propio correspondiente a 1 = 1 satisface 3x1 + 2x2 = 0. Un vector propio de este tipo es v1 = 2
-3
Así, E1 = gen 2
-3
-2 2 x1 = 0
De manera similar, la ecuación (A - 6I)v =0 significa que 3 -3 x2 0 o x1 = x2.
Entonces v2 = 1 es un vector propio correspondiente a 2 = 6 y E6 = gen 1 .
* 1
Observe que v1 y v2 son linealmente independientes ya que uno no es múltiplo del otro.
Nota. No importa si se establece 1 = 1 y 2 = 6 o 1 = 6 y 2 = 1.
 POLINOMIO CARACTERISTICO Y ECUACION CARACTERISTICA
Teorema 1. Sea A una matriz de n * n. Entonces es un valor propio de A síy sólo sí
(4)
Definición. Ecuación y polinomio característicos. La ecuación (4) se llama la ecuación característica de A; p() se llama el polinomio característico de A.
Como será evidente p() es un polinomio de grado n en . Por ejemplo, si A = a b
c d
Entonces, A - I = a b 0 = a - b
c d 0 c d -
y p() = det ( A - I) = ( a - )(d - ) - bc = 2 - (a + b) + (ad - bc).
Según el teorema fundamental...
Leer documento completo

Regístrate para leer el documento completo.

Estos documentos también te pueden resultar útiles

  • Eigen Vectores, Eigen Valores y Polinomio Característico
  • Determinación de los valores y vectores característicos de una matriz cuadrada.
  • Valores y vectores característicos
  • Valores y vectores caracteristicos
  • Valores y vectores caracteristicos
  • Caracteristicas de un vector
  • Caracteristicas de los vectores
  • Caracteristicas de un vector

Conviértase en miembro formal de Buenas Tareas

INSCRÍBETE - ES GRATIS