Calculo Integral Lesbia
Efraín Soto Apolinar
Índice de contenidos
1 Diferenciales e integral indefinida
1
1.1 La Diferencial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.1.1
Reglas de diferenciación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
4
1.1.2
La diferencial como aproximación al incremento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
1.2 La integral indefinida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1
Constante de integración . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 18
1.2.2
Integral indefinida de funciones algebraicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.3
Integración por sustitución trigonométrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2 La integral definida y los métodos de integración
45
2.1 La Integral Definida . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.1
Notación de sumatoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.2
Área bajo una curva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.1.3Diferencial de área . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.4
Integral definida . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2 Técnicas de integración . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 61
2.2.1
Cambio de variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.2.2
Integración por partes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.3
Integración de funciones trigonométricas . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.2.4
Integración por fracciones parciales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.5
Denominadores con factores lineales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.2.6
Denominadores con factores cuadráticos . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3 Teorema fundamental del Cálculo
y las aplicaciones de la integral definida
91
3.1 El teorema fundamental y sus aplicaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1.1
Integración aproximada: Regla del trapecio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 93
3.1.2
Integración aproximada: Regla de Simpson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2 Área entre dos funciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3 Aplicaciones de la integral definida . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 109
Efraín Soto A.
www.aprendematematicas.org.mx
ii
ÍNDICE DE CONTENIDOS
www.aprendematematicas.org.mx
Efraín Soto A.
Capítulo 1
Diferenciales e integral indefinida
Por aprender...
1.1. La diferencial
1.1.1. Interpretación gráfica
1.1.2. Reglas de la diferenciación
1.1.3. La diferencial como aproximación del incremento
1.1.4. Errores...
Regístrate para leer el documento completo.