el metodo simplex
La forma estándar del modelo de problema consta de una función objetivo sujeta a determinadas restricciones:
Función objetivo:
c1·x1 + c2·x2 + ... + cn·xn
Sujeto a:
a11·x1 + a12·x2 + ... + a1n·xn = b1
a21·x1 + a22·x2 + ... + a2n·xn = b2
...
am1·x1 + am2·x2 + ... + amn·xn = bm
x1,..., xn ≥ 0
El modelo debe cumplir las siguientescondiciones:
1. El objetivo consistirá en maximizar o minimizar el valor de la función objetivo (por ejemplo, incrementar ganancias o reducir pérdidas, respectivamente).
2. Todas las restricciones deben ser ecuaciones de igualdad (identidades matemáticas).
3. Todas las variables (xi) deben tener valor positivo o nulo (condición de no negatividad).
4. Los términos independientes (bi) de cadaecuación deben ser no negativos.
Hay que adaptar el problema modelado a la forma estándar para poder aplicar el algoritmo del Simplex.
Tipo de optimización.
Como se ha comentado, el objetivo del método consistirá en optimizar el valor de la función objetivo. Sin embargo se presentan dos opciones: obtener el valor óptimo mayor (maximizar) u obtener el valor óptimo menor (minimizar).
Además existendiferencias en el algoritmo entre el objetivo de maximización y el de minimización en cuanto al criterio de condición de parada para finalizar las iteraciones y a las condiciones de entrada y salida de la base. Así:
Objetivo de maximización
Condición de parada: cuando en la fila Z no aparece ningún valor negativo.
Condición de entrada a la base: el menor valor negativo en la fila Z (o el demayor valor absoluto entre los negativos) indica la variable Pj que entra a la base.
Condición de salida de la base: una vez obtenida la variable entrante, la variable que sale se determina mediante el menor cociente P0/Pj de los estrictamente positivos.
Objetivo de minimización
Condición de parada: cuando en la fila Z no aparece ningún valor positivo.
Condición de entrada a la base: el mayorvalor positivo en la fila Z indica la variable Pj que entra a la base.
Condición de salida de la base: una vez obtenida la variable entrante, la variable que sale se determina mediante el menor cociente P0/Pj de los estrictamente negativos.
No obstante, es posible normalizar el objetivo del problema con el fin de aplicar siempre los mismos criterios en lo referente a la condición de parada delalgoritmo y a las condiciones de entrada y salida de las variables de la base. De esta forma, si el objetivo es minimizar la solución, se puede cambiar el problema a otro equivalente de maximización simplemente multiplicando la función objetivo por "1". Es decir, el problema de minimizar Z es equivalente al problema de maximizar (-1)·Z. Una vez obtenida la solución será necesario multiplicarlatambién por (-1).
Ventajas: No hay que preocuparse por nuevos criterios de parada, condición de entrada y salida de la base ya que se mantienen.
Inconvenientes: En el caso de que la función tenga todos los coeficientes de sus variables básicas positivos, y además las restricciones sean del tipo de desigualdad "≤", al hacer el cambio dichos coeficientes quedan negativos cumpliéndose la condiciónde parada en la primera iteración (en la fila del valor de la función objetivo todos los valores son positivos o cero). Obteniéndose en este caso por defecto un valor óptimo para la función igual a 0.
Solución: Realmente no existe este problema dado que para que la solución sea superior a 0 es necesario que alguna restricción tenga impuesta la condición "≥" (y se trataría de un modelo parael método de las Dos Fases). En el caso planteado, la solución real debe ser cero.
Cambio de signo de los términos independientes
También se ha dicho que los términos independientes (bi) de cada ecuación deben ser no negativos para poder emplear el método Simplex. A tal fin, si alguna de las restricciones presenta un término independiente menor que 0 habrá que multiplicar por "-1" ambos lados de la...
Regístrate para leer el documento completo.