Fourier
Function, f(t)
Definition of Inverse Fourier Transform
1
f (t ) =
2p
¥
ò F (w )e
jwt
dw
Fourier Transform, F(w)
Definition of Fourier Transform¥
F (w ) =
-¥
ò f (t )e
- jw t
dt
-¥
f (t - t 0 )
F (w )e - jwt0
f (t )e jw 0t
F (w - w 0 )
f (at )
1
w
F( )
a
a
F (t )
2pf (-w )
d n f (t )
( jw) n F (w )
dt n
(- jt ) n f (t )
d n F (w )
dw n
t
ò
f (t )dt
-¥
F (w )
+ pF (0)d (w )
jw
d (t )
1
e jw 0 t
2pd (w - w 0 )
sgn (t)
2
jw
Signals & Systems- Reference Tables
1
j
sgn(w )
1
pt
u (t )
pd (w ) +
¥
1
jw
¥
å Fn e jnw 0t
2p
t
rect ( )
t
tSa(
B
Bt
Sa( )
2p
2
w
rect ( )
B
tri (t )
wSa 2 ( )
2
n = -¥
A cos(
pt
t
)rect ( )
2t
2t
å Fnd (w - nw 0 )
n = -¥
wt
)
2
Ap cos(wt )
t (p ) 2 - w 2
2t
cos(w 0 t )
p [d (w - w 0 ) + d (w + w 0 )]
sin(w 0t )
p
[d (w - w 0 ) - d (w + w 0 )]
j
u (t ) cos(w 0 t )
p
[d (w - w 0 ) + d (w + w 0 )] + 2 jw 2
2
w0 - w
u (t ) sin(w 0 t )
2
p
[d (w - w 0 ) - d (w + w 0 )] + 2w 2
2j
w0 - wu (t )e -at cos(w 0 t )
Signals & Systems - Reference Tables
(a + jw )
2
w 0 + (a + jw ) 2
2
w0
u (t )e -at sin(w 0 t )
e
2
w 0 + (a + jw ) 2
2a
-a t
e -t
a2+w2
2
/( 2s 2 )
s 2p e -s
2
w2 / 2
1
a + jw
u (t )e -at
1
u (t )te -at
(a + jw ) 2
Ø Trigonometric Fourier Series
¥
f (t ) = a 0 + å (a n cos(w 0 nt ) + bn sin(w 0nt ) )
n =1
where
1
a0 =
T
T
ò0
2T
f (t )dt , a n = ò f (t ) cos(w 0 nt )dt , and
T0
2T
bn = ò f (t ) sin(w 0 nt )dt
T0
Ø Complex Exponential Fourier Series
f (t ) =
¥å Fn e
jwnt
, where
n = -¥
Signals & Systems - Reference Tables
1T
Fn = ò f (t )e - jw 0 nt dt
T0
3
Some Useful Mathematical Relationships
e jx + e - jx
cos( x) =
2
e jx...
Regístrate para leer el documento completo.