funciones de la trigonometria
Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triángulo rectángulo asociado a sus ángulos. Las funciones trigonométricas son funciones cuyos valores son extensiones del concepto de razón trigonométrica en un triángulo rectángulo trazado en una circunferencia unitaria (de radio unidad). Definiciones más modernas lasdescriben como series infinitas o como la solución de ciertas ecuaciones diferenciales, permitiendo su extensión a valores positivos y negativos, e incluso a números complejos.
Existen seis funciones trigonométricas básicas. Las últimas cuatro, se definen en relación de las dos primeras funciones, aunque se pueden definir geométricamente o por medio de sus relaciones. Algunas funciones fueron comunesantiguamente, y aparecen en las primeras tablas, pero no se utilizan actualmente; por ejemplo el ver seno (1 − cos θ) y la exsecante (sec θ − 1).
Función Abreviatura Equivalencias (en radianes)
Seno
sin (sen)
Coseno
cos
Tangente
tan
Cotangente
ctg (cot)
Secante
sec
Cosecante
csc (cosec)
Triángulo rectángulo
Antes de concentrarnos en las funciones, nos ayudará darnombres a los lados de un triángulo rectángulo, de esta manera:
(Adyacente significa tocando el ángulo, y opuesto es opuesto al ángulo... ¡claro!)
Seno, coseno y tangente
Las tres funciones más importantes en trigonometría son el seno, el coseno y la tangente. Cada una es la longitud de un lado dividida entre la longitud de otro... ¡sólo tienes que aprenderte qué lados son!
Para el ángulo θ :Función seno: sin(θ) = Opuesto / Hipotenusa
Función coseno: cos(θ) = Adyacente / Hipotenusa
Función tangente: tan(θ) = Opuesto / Adyacente
Nota: el seno se suele denotar sin() (por la palabra inglesa "sine") o sen(). Aquí utilizaremos sin() pero puedes encontrarte la otra notación en otros libros o sitios web.
Sohcahtoa
Sohca...¿qué? ¡Sólo es una manera de recordar qué lados se dividen!Así:
Soh... Seno = Opuesto / Hipotenusa
...cah... Coseno = Adyacente / Hipotenusa
...toa Tangente = Opuesto / Adyacente
Apréndete "sohcahtoa" - ¡te puede ayudar en un examen!
Ejemplos
Ejemplo 1: ¿cuáles son el seno, coseno y tangente de 30° ?
El triángulo clásico de 30° tiene hipotenusa de longitud 2, lado opuesto de longitud 1 y lado adyacente de longitud √3:
Seno sin(30°) = 1 / 2 = 0.5Coseno cos(30°) = 1.732 / 2 = 0.866
Tangente tan(30°) = 1 / 1.732 = 0.577
(¡saca la calculadora y compruébalo!)
Ejemplo 2: ¿cuáles son el seno, coseno y tangente de 45°?
El triángulo clásico de 45° tiene dos lados de 1 e hipotenusa √2:
Seno sin(45°) = 1 / 1.414 = 0.707
Coseno cos(45°) = 1 / 1.414 = 0.707
Tangente tan(45°) = 1 / 1 = 1
Ejercicio
Prueba este ejercicio sobre el papeldonde tienes que calcular la función seno para ángulos de 0° a 360°, y dibujar el resultado. Te ayudará a entender estas funciones que son bastante simples.
Funciones menos común
Para completar el cuadro, hay otras 3 funciones donde divides un lado por otro, pero no se usan tanto.
Son iguales a 1 dividido entre las tres funciones básicas (sin, cos y tan), así:
Función secante: sec(θ) = Hipotenusa/ Adyacente (=1/cos)
Función cosecante: csc(θ) = Hipotenusa / Opuesto (=1/sin)
Función cotangente: cot(θ) = Adyacente / Opuesto (=1/tan)
Definiciones respecto de un triángulo rectángulo
Para definir las razones trigonométricas del ángulo: , del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que seusará en el sucesivo será:
• La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.
• El cateto opuesto (a) es el lado opuesto al ángulo .
• El cateto adyacente (b) es el lado adyacente al ángulo .
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o...
Regístrate para leer el documento completo.