Maquinas Y Mecanismos Engranes
engranajes.
MAQUINAS Y MECANISMOS. Engranajes.
1
Indice
► Introducción.
► Ruedas
de fricción.
► Tipos de ruedas dentadas.
► Perfiles conjugados: ley fundamental de engrane.
► Dentado de engranajes.
► Perfil de evolvente.
► Tallado de ruedas dentadas.
► Trenes de engranajes.
Trenes de ejes fijos.
Trenes epicicloidales.
MAQUINAS Y MECANISMOS. Engranajes.
2
►
►Introducción
Existe la necesidad de transmitir
movimiento de rotación entre ejes
de forma que exista una relación
constante entre sus velocidades
angulares.
Para ello se usan diferentes
sistemas:
►
Ruedas de fricción.
Correas.
Cadenas.
Engranajes.
En este tema se estudiarán los
engranajes y los condicionantes
geométricos de los perfiles de los
perfiles de los dientes de las
ruedas paraque su funcionamiento
sea el adecuado.
MAQUINAS Y MECANISMOS. Engranajes.
3
Introducción
►
Hay diferentes motivos por los que se
requiere la transmisión de movimiento
entre ejes.
Existencia de ejes no coincidentes.
Establecimiento de relaciones de velocidad
precisas.
Necesidad de invertir el sentido de giro de un
eje.
Adecuar la velocidad de un motor a las
características de lacarga.
►
Relación de transmisión: = 2/ 1
1 es la velocidad de entrada.
2 es la velocidad de salida.
Es una ec. cinemática de enlace: 1 - 2= 0
Relación de reducción: i= 1/
MAQUINAS Y MECANISMOS. Engranajes.
4
Ruedas de fricción: cilindros
►
En la figura se muestran dos pares de rodillos de fricción.
Estos mecanismos sólo pueden transmitir movimiento de
un cuerpo a otro siexiste suficiente rozamiento en las
superficies de contacto; por este motivo se denominan
rodillos de fricción.
2
VP2 =VP3
O2
P=P
2
3
VP2 =V
P3
R2
P=P
2
3
R2
C
R3
R3
O3
O2
2
C
O3
3
3
MAQUINAS Y MECANISMOS. Engranajes.
5
Ruedas de fricción: cilindros
►
v0P 2
Puesto que en cualquiera de los casos las velocidades del
punto P para cada uno de los cilindros son iguales:
3
R2
P3
0P2
2
P3
3
2
3
v0
v0 0 R2 y v0 0 R3
0 R2 0 R3
02 R3
R2 R3 C R2 C R3
03 C R3 C
1
2
R3
R3
0
2
VP2 =VP3
O2
P=P
2
3
VP2 =VP3
R2
P=P
2
3
R2
C
R3
R3
O3
O2
2
C
O3
Ec. de diseño
para trenes de
engranajes.
R3
3
►
3
Si un cilindro es interior, giran en el mismo
sentido y además: R3 C R2
MAQUINAS Y MECANISMOS. Engranajes.
C
03
1
2
0
C
1
6
Ruedas de fricción: conos
► Si
los ejes se cortan, pueden utilizarse conos de
fricción.
Puesto que la velocidad del punto P es
la misma tanto para el perteneciente
al cono 3 como para el perteneciente
al cono 2:
3
v0P 3 v0p 2
R3 R2
3
0
2
0
C
O
R
2
R3
3
0
2
0
En el diseño de máquinas, el problema
más habitual es calcular los ángulos
de cada uno de losconos una vez
conocida la relación de transmisión y
el ángulo que forman los ejes.
MAQUINAS Y MECANISMOS. Engranajes.
R3
P
B
2
3
R2
2
7
Ruedas de fricción: conos
Los ángulos de los conos pueden ser expresados
como:
sen 2
R2
OP
y sen 3
R3
OP
Dividiendo ambos términos entre sí:
Como
sen 2 R2 03
2
sen 3 R3 0
2 3
De donde, finalmente:
3
C
O
sen cos 3 cos sen 3 03
2
sen 3
0
sen
cos
tg 3
3
0
2
0
sen
tg 3
cos
MAQUINAS Y MECANISMOS. Engranajes.
R3
P
B
2
3
R2
2
8
Ruedas de fricción: conos
►
►
Si se desea cambiar el sentido de giro del eje de salida,
se deberá usar un cono con contacto interior y otro con
contacto exterior.
En este caso se obtiene que: 2 3
3
P
2
2
R2
3
O
R303 sen 2
2
0 sen 3
sen 3 co cos 3 sen
sen 3
sen
cos
tg 3
sen
tg 3
cos
MAQUINAS Y MECANISMOS. Engranajes.
9
Ruedas de fricción: hiperboloides
En la figura las superficies de
contacto son hiperboloides.
Paralela a A-A
► Un hiperboloide puede
generarse por rotación de una
línea alrededor de un eje con
C
el que no es paralela, ni se
3
corta.
A
2
► En la...
Regístrate para leer el documento completo.