Calculo de aproximaciones

Solo disponible en BuenasTareas
  • Páginas : 2 (464 palabras )
  • Descarga(s) : 0
  • Publicado : 15 de diciembre de 2010
Leer documento completo
Vista previa del texto
Cálculo de aproximaciones empleando diferenciales

El uso de los diferenciales como medio de aproximación se basa en la aproximación lineal mostrada en el apartado T-CI1-101 previo; en élmostramos la expresión y – y0 = f ´(x0) (x – x0) la cual podemos escribir y = f(x0) + f ´(x0)dx o en términos aproximados y = f(x0) + f ´(x0)Δx lo cual nos permite calcular el nuevo valor de y una vez quenos ubicamos en el punto x + Δx, o bien el incremento que sufre el valor de y mediante dy = f´(x0) dx que en términos aproximados se puede escribir Δy = f´(x0) Δx.
En las diferentes expresiones que sehan señalado debemos recordar que se emplea la aproximación Δx ≈ dx y Δy ≈ dy. La situación más complicada que se nos podría presentar en las situaciones reales será el conocer el valor de laexpresión f´(x0), misma que se puede aproximar mediante la medición de la velocidad con que ocurre la variación dentro de la situación bajo estudio.
Por ejemplo:
Un fabricante de pelotas de plásticorealiza la producción de 1000 pelotas del modelo R-45 cuya característica de diseño implica un diámetro de 30 cm y un espesor de 2 mm. Por motivo de un desajuste en la maquinaria, los encargados decontrol de calidad afirman que las pelotas han salido con un espesor de 2.3 mm. ¿Cuánto plástico en exceso se ha gastado aproximadamente en la producción?
En este caso, ya que podemos considerar que lapelota es un recipiente de “pared delgada”, podemos calcular la cantidad de plástico empleada por cada pelota como V = espesor(área de la pelota) = h(4π r2), sin embargo puesto que h ha variado un pocose tiene ΔV = f´(h0) Δh = 4π r2 Δh = 4π(15)2(0.03) = 84.823 cm3 y puesto que se produjeron 1000 pelotas tendremos 84823 cm3, es decir 84.823 lt de plástico, que representa una pérdida considerable.Podemos observar que si calculamos el volumen de plástico con relación al volumen de la esfera se tendría V = 4π(a3–b3)/3 donde a y b son el radio exterior e interior respectivamente, luego si...
tracking img