Maple

Solo disponible en BuenasTareas
  • Páginas : 3 (524 palabras )
  • Descarga(s) : 0
  • Publicado : 23 de mayo de 2011
Leer documento completo
Vista previa del texto
EXERCICIS MAPLE MATRIUS, DETERMINATS I SISTEMES EQUACIONS LINEALS > with(LinearAlgebra):

1. a)
> A:= Matrix ([[-4,1,-1],[0,-1,1]]); -4 1 -1  A :=   0 -1 1 > B:= Matrix([[2,3],[7,9],[-5,6]]);  2  B :=  7   -5 > A.B;  4 -9   -12 -3 > B.A;  -8 -1 1   -28 -2 2    20 -11 11 Si que es poden fer perque el que hem de mirar es que el numero de columnes de la primera matriusigui igual al numero de files de la segona matriu i aixo es compleix en els dos casos A·B--> 2x3 i 3x2, B·A--> 3x2 i 2x3 3  9  6

b)
> A:= Matrix ([[7,-3,-3],[-1,1,0],[-1,0,1]]); 7  A :=-1  -1 > Determinant(A); 1 Si que te inversa perque el determinant es diferent de 0 > A^(-1); 1  1  1 3 4 3 3  3  4 -3 1 0 -3  0  1

2.
> A:=Matrix([[1,1,2,1],[m,1,-1,0],[3,m,1,1],[1,1,m,1]]); 1 1 2  m 1 -1 A :=  3 m 1  1 1 m > P:= Determinant(A); P := 3 m2 − m3 − 4 1  0  1  1

> solve(P); -1, 2, 2

3. a)
> A:=Matrix([[2,2,-1,0,1],[-1,-1,2,-3,1],[1,1,-2,0,-1],[0,0,1,1,1]]); 2  -1 A :=  1  0 > v:=Vector([0,0,0,0]);    v :=     > H:=; 2  -1 H :=  1  0 2 -1 1 0 -1 2 -2 1 0 -3 0 1 1 1 -1 1 0  0  0  0 0  0  0  0 2 -1 1 0 -1 2-2 1 0 -3 0 1 1  1  -1  1

B)
> GaussianElimination(H); 0 1 0  2 2 -1     3 3 0 0 -3 0   2 2    0 0 0 -3 0 0     0 0 0 0 0 0 Es un sitema compatible indeterminat perquel' ultima fila dona tota de 0 aixo vol dir que tenim 4 incognites i 3 solucions, es a dir que una quedara en funcio de l' altre.((-2y+2/3-2u)/2 , y , 2/3-u , 0 , u )) Te dos graus de llibertat.4.a)
> A:=Matrix([[1,2,2,1],[1,3,1,-1],[2,5,5,0]]); 1  A := 1  2 > v:=Vector([25,20,45]);  25   v :=  20    45 > H:=; 1  H := 1  2 2 3 5 2 1 5 1 -1 0 25  20  45 2 3 5 2 1 5 1 -1  0

b)
> ReducedRowEchelonForm(H); 1 0 0 5 35   0 1 0 -2 -5   0 0 1 0 0 Es un sistema compatible indeterminat perque t=t Solucions: (35-5t , 5+2t , 0 , t) . Te un grau de...
tracking img