Medidas de tendencia central

Solo disponible en BuenasTareas
  • Páginas : 4 (830 palabras )
  • Descarga(s) : 0
  • Publicado : 6 de septiembre de 2010
Leer documento completo
Vista previa del texto
Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro de la distribución dedatos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de queésta esté más o menos centrada, se habla de estas medidas como medidas de posición. En este caso se incluyen también los cuantiles entre estas medidas.
Entre las medidas de tendencia central tenemos:Media aritmética.
Media ponderada.
Media geométrica.
Media armónica.
Mediana.
Moda.
La media aritmética (o simplemente media)
La mediaaritmética es el valor obtenido sumando todas las observaciones y dividiendo el total por el número de observaciones que hay en el grupo. La media resume en un valor las características de una variableteniendo en cuenta todos los casos. Solamente puede utilizarse con variables cuantitativas.
Por ejemplo, las notas de 5 alumnos en una prueba:
Alumno Nota
1 6,0 •Primero, se suman las notas:
2 5,46,0+5,4+3,1+7,0+6,1 = 27,6
3 3,1 •Luego el total se divide entre la cantidad de alumnos:
4 7,0 27,6/5=5,52
5 6,1 •La media aritmética en este ejemplo es 5,52

La media aritmética es,probablemente, uno de los parámetros estadísticos más extendidos. Se le llama también promedio o, simplemente, media.
Definición formal
Dado un conjunto numérico de datos, x1, x2,..., xn, se define su mediaaritmética como


Media aritmética ponderada
A veces puede ser útil otorgar pesos o valores a los datos dependiendo de surelevancia para determinado estudio. En esos casos se puede utilizar una media ponderada.
Si x1, x2,..., xn son nuestros datos y w1, w2,...,wn son sus "pesos" respectivos, la media ponderada se define de...
tracking img