Modelo de van hiele para la didáctica de la geometría

Solo disponible en BuenasTareas
  • Páginas : 18 (4478 palabras )
  • Descarga(s) : 0
  • Publicado : 9 de mayo de 2010
Leer documento completo
Vista previa del texto
Modelo de Van Hiele para la didáctica de la Geometría
por Fernando Fouz, Berritzegune de Donosti

1. Introducción
Como la charla fue desarrollada en Power Point no puede ser trasladada directamente a estas páginas, debo rehacer su contenido para adaptarlo a un artículo como éste. Por este motivo voy a tratar de explicar el modelo y sus características generales para que, aquellas personasinteresadas en la necesaria promoción de la Geometría, puedan encontrar una herramienta útil para organizar el currículo geométrico y su desarrollo en las clases. No es un modelo reciente, pues data de final de los cincuenta, pero, con la interpretación de los niveles a la didáctica actual, no ha perdido ninguna vigencia y sus ideas principales, niveles de aprendizaje y fases para una didácticaadecuada que facilite el paso de un nivel a otro, tienen gran interés para la elaboración de currículos abiertos de Geometría. Los niveles ayudan a secuenciar los contenidos y las fases organizan las actividades que podemos diseñar en la unidades didácticas. El trabajo se debe al matrimonio formado por Dina y Pierre Van Hiele aunque, la prematura muerte de Dina provocó que fuese su marido el encargadode su mayor difusión. El libro original donde se desarrolla la teoría se titula “Structure and Insight”.

2. Ideas básicas del modelo
La idea básica de partida, dicho de forma sencilla y rápida, es que “el aprendizaje de la Geometría se hace pasando por unos determinados niveles de pensamiento y conocimiento”, “que no van asociados a la edad” y “que sólo alcanzado un nivel se puede pasar alsiguiente”. Es más, se señala que cualquier persona, y 67

68

Un Paseo por la Geometría

ante un nuevo contenido geométrico a aprender, “pasa por todos esos niveles y, su mayor o menor dominio de la Geometría, influirá en que lo haga más o menos rápidamente”. En el libro, señalado anteriormente, Van Hiele concreta que “alcanzar un nivel superior de pensamiento significa que, con un nuevo ordende pensamiento, una persona es capaz, respecto a determinadas operaciones, de aplicarlas a nuevos objetos”. Antes de señalar los niveles concretos, es importante señalar algunas ideas previas al modelo y referidas a los estudiantes que, basadas en la experiencia del trabajo con ellos y ellas del matrimonio Van Hiele, marcan el diseño del modelo. Podemos señalar entre otras que, en la base delaprendizaje de la Geometría, hay dos elementos importantes “el lenguaje utilizado” y “la significatividad de los contenidos”. Lo primero implica que los niveles, y su adquisición, van muy unidos al dominio del lenguaje adecuado y, lo segundo, que sólo van a asimilar aquello que les es presentado a nivel de su razonamiento. Si no es así se debe esperar a que lo alcancen para enseñarles un contenidomatemático nuevo. Para terminar estos previos Van Hiele señala que “no hay un método panacea para alcanzar un nivel nuevo pero, mediante unas actividades y enseñanza adecuadas se puede predisponer a los estudiantes a su adquisición”.

3. Niveles de Van Hiele: Denominación y descripción
Los niveles son cinco y se suelen nombrar con los números del 1 al 5, sin embargo, es más utilizada la notación del0 al 4. Estos niveles se denominan de la siguiente manera:
NIVEL 0: Visualización o reconocimiento
NIVEL 1: Análisis
NIVEL 2: Ordenación o clasificación
NIVEL 3: Deducción formal
NIVEL 4: Rigor Dado que el nivel 5o se piensa que es inalcanzable para los estudiantes y muchas veces se prescinde de él, además, trabajos realizados señalan que los estudiantes no universitarios, como mucho, alcanzanlos tres primeros niveles. Es importante señalar que, un o una estudiante puede estar, según el contenido trabajado, en un nivel u otro distinto. A continuación vamos a describir cuáles son las características de cada nivel. Desde las perspectiva del aprendizaje de los estudiantes.

Modelo de Van Hiele para la didáctica de la Geometría 3.1 NIVEL 0: VISUALIZACIÓN O RECONOCIMIENTO

69...
tracking img