# Precision error en estado estable estabilidad criterio de jury

Solo disponible en BuenasTareas
• Páginas : 2 (437 palabras )
• Descarga(s) : 0
• Publicado : 11 de febrero de 2011

Vista previa del texto
TALLER # 3 PRECISION ERROR EN ESTADO ESTABLE
ESTABILIDAD CRITERIO DE JURY
Comprobación con matlab de la ubicación de los polos dentro del circulo unitario;
Ejercicio 1 i. G(z) = 0.4(z + 0.2)(z - 1)(z – 0.1)

Programa matlab.

>> syms z
>> numdz = [0.4 0.08]

numdz =
0.4000 0.0800

>> numDz = [0.4 0.08]

numDz =
0.4000 0.0800>> denDz1 = [1 -1]

denDz1 =
1 -1

>> denDz2 = [1 -0.1]

denDz2 =
1.0000 -0.1000

>> denDz = conv(denDz1,denDz2)

denDz =
1.0000 -1.1000 0.1000

>> [n,d] =cloop(numDz,denDz,-1)

n =
0 0.4000 0.0800

d =
1.0000 -0.7000 0.1800

>> printsys(n,d,'z')

num/den =
0.4 z + 0.08
------------------
z^2 - 0.7 z + 0.18>> figure(1)
>> zplane(n,d); zgrid; grid on
>> axis([-1 1 -1 1])
>> title('Plano z')

Ejercicio 1 ii.

G(z) = 0.5 (z + 0.2)
(z – 0.1)(z – 0.9)

Programa matlab.>> numDz = [0.5 0.1]

numDz =
0.5000 0.1000

>> denDz1 = [1 -0.7]

denDz1 =
1.0000 -0.7000

>> denDz2 = [1 -0.8]

denDz2 =
1.0000 -0.8000

>> denDz =conv(denDz1,denDz2)

denDz =
1.0000 -1.5000 0.5600

>> [n,d] = cloop(numDz,denDz,-1)

n =
0 0.5000 0.1000

d =
1.0000 -1.0000 0.6600

>> printsys(n,d,'z')

num/den =0.5 z + 0.1
----------------
z^2 - 1 z + 0.66
>> zplane(n,d); zgrid; grid on
>> axis([-1 1 -1 1])
>> title('Plano z')

Ejercicio 2.

G(z) = 10 (z + 0.1)
(z– 0.7)(z – 0.9)

Programa matlab.

>> syms z
>> numDz = [10 1]

numDz =
10 1

>> denDz1 = [1 -0.7]

denDz1 =
1.0000 -0.7000

>> denDz2 = [1 -0.9]

denDz2 =
1.0000-0.9000

>> denDz = conv(denDz1,denDz2)

denDz =
1.0000 -1.6000 0.6300

>> [n,d] = cloop(numDz,denDz,-1)

n =
0 10 1

d =
1.0000 8.4000 1.6300

>>...