Solo disponible en BuenasTareas
  • Páginas : 19 (4564 palabras )
  • Descarga(s) : 0
  • Publicado : 30 de enero de 2012
Leer documento completo
Vista previa del texto



1.1 The TCLP is designed to determine the mobility of both organic and inorganic analytes present in liquid, solid, and multiphasic wastes. 1.2 If a total analysis of the waste demonstrates that individual analytes are not present in the waste, or that they are present but at such low concentrations that theappropriate regulatory levels could not possibly be exceeded, the TCLP need not be run. 1.3 If an analysis of any one of the liquid fractions of the TCLP extract indicates that a regulated compound is present at such high concentrations that, even after accounting for dilution from the other fractions of the extract, the concentration would be above the regulatory level for that compound, thenthe waste is hazardous and it is not necessary to analyze the remaining fractions of the extract. 1.4 If an analysis of extract obtained using a bottle extractor shows that the concentration of any regulated volatile analyte exceeds the regulatory level for that compound, then the waste is hazardous and extraction using the ZHE is not necessary. However, extract from a bottle extractor cannot beused to demonstrate that the concentration of volatile compounds is below the regulatory level. 2.0 SUMMARY OF METHOD

2.1 For liquid wastes (i.e., those containing less than 0.5% dry solid material), the waste, after filtration through a 0.6 to 0.8 µm glass fiber filter, is defined as the TCLP extract. 2.2 For wastes containing greater than or equal to 0.5% solids, the liquid, if any, is separatedfrom the solid phase and stored for later analysis; the particle size of the solid phase is reduced, if necessary. The solid phase is extracted with an amount of extraction fluid equal to 20 times the weight of the solid phase. The extraction fluid employed is a function of the alkalinity of the solid phase of the waste. A special extractor vessel is used when testing for volatile analytes (seeTable 1 for a list of volatile compounds). Following extraction, the liquid extract is separated from the solid phase by filtration through a 0.6 to 0.8 µm glass fiber filter. 2.3 If compatible (i.e., multiple phases will not form on combination), the initial liquid phase of the waste is added to the liquid extract, and these are analyzed together. If incompatible, the liquids are analyzedseparately and the results are mathematically combined to yield a volume-weighted average concentration. CD-ROM 1311- 1 Revision 0 July 1992



3.1 Potential interferences that may be encountered during analysis are discussed in the individual analytical methods. 4.0 APPARATUS AND MATERIALS

4.1 Agitation apparatus: The agitation apparatus must be capable of rotating theextraction vessel in an end-over-end fashion (see Figure 1) at 30 + 2 rpm. Suitable devices known to EPA are identified in Table 2. 4.2 Extraction Vessels

4.2.1 Zero-Headspace Extraction Vessel (ZHE). This device is for use only when the waste is being tested for the mobility of volatile analytes (i.e., those listed in Table 1). The ZHE (depicted in Figure 2) allows for liquid/solid separation withinthe device, and effectively precludes headspace. This type of vessel allows for initial liquid/solid separation, extraction, and final extract filtration without opening the vessel (see Section 4.3.1). The vessels shall have an internal volume of 500-600 mL, and be equipped to accommodate a 90-110 mm filter. The devices contain VITON®1 O-rings which should be replaced frequently. Suitable ZHEdevices known to EPA are identified in Table 3. For the ZHE to be acceptable for use, the piston within the ZHE should be able to be moved with approximately 15 psi or less. If it takes more pressure to move the piston, the O-rings in the device should be replaced. If this does not solve the problem, the ZHE is unacceptable for TCLP analyses and the manufacturer should be contacted. The ZHE should...
tracking img