Conjuntos
La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.1
Sin embargo, la teoría de los conjuntos es lo suficientemente rica como paraconstruir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas, ...; y junto con la lógica permite estudiar los fundamentos de esta. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Conjunto
En matemáticas, un conjunto es una colección de objetos considerada comoun objeto en sí. Los objetos de la colección pueden ser cualquier cosa: personas, números, colores, letras,figuras, etc. Cada uno de los objetos en la colección es un elemento o miembro del conjunto.1Por ejemplo, el conjunto de los colores del arcoíris es:
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta}
Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen.Por ejemplo, para los números naturales, si consideramos la propiedad de ser un número primo, el conjunto de los números primos es:
P = {2, 3, 5, 7, 11, 13, ...}
Un conjunto queda definido únicamente por sus miembros y por nada más. En particular el orden en el que se representen estos es irrelevante. Además, cada elemento puede aparecer de manera idéntica una sola vez, esto es, no puede haberelementos totalmente idénticosrepetidos. Por ejemplo:
S = {Lunes, Martes, Miércoles, Jueves, Viernes} = {Martes, Viernes, Jueves, Lunes, Miércoles}
AI = {Rojo, Naranja, Amarillo, Verde, Azul, Añil, Violeta} = {Amarillo, Naranja, Rojo, Verde, Violeta, Añil, Azul}
Descripción de un conjunto
Existen dos maneras de describir o especificar los elementos de un conjunto:
Una de ellas es medianteuna definición intensiva o por comprensión, describiendo una condición que cumplen sus elementos :
A es el conjunto cuyos miembros son los números enteros positivos menores que 5.
B es el conjunto de colores de la bandera de México.
La segunda manera es por extensión, esto es, listando cada miembro del conjunto. En unadefinición extensiva se escriben los elementos del conjuntos entre llaves:
C = {4, 2,3, 1}
D = {blanco, rojo, verde}
Puesto que un conjunto queda especificado únicamente por sus elementos, a menudo pueden usarse ambas definiciones, intensivas y extensivas, para especificar un mismo conjunto. Por ejemplo:
«El conjunto de las vocales en español» = {e, u, a, i, o}
En los ejemplos anteriores, se tiene que A = C y B = D
Debido a la propiedad de la extensionalidad, el orden en el que seespecifiquen los elementos de un conjunto es irrelevante (a diferencia de una tupla o una sucesión). Por ejemplo:
C′ = {1, 2, 4, 3} es igual a C = {4, 2, 3, 1}
D′ = {verde, blanco, rojo} es igual a D = {blanco, rojo, verde}
Esto es así debido a que lo único que define un conjunto son sus elementos. Por ejemplo, cada elemento de D es un elemento de D′ y viceversa, luego ambos son necesariamente elmismo conjunto. Del mismo modo, y a diferencia de un multiconjunto, cada elemento de un conjunto es único: no puede repetirse o pertenecer «más de una vez». Esto significa que, por ejemplo:
{4, 3, 2, 4} = {4, 2, 3} ,
ya que los elementos de ambos conjuntos son los mismos: el 4, el 3 y el 2. No sería el caso si los números que consideramos tuvieran alguna otra propiedad que los diferenciase:
{4, 3,2, 4} es distinto de {4, 2, 3} y de {4, 2, 3}
Es habitual utilizar las llaves también en las definiciones intensivas, especificando la propiedad que define al conjunto:
{Vocales del español} = {o, u, i, e, a}
{Palos de la baraja francesa} = {♠, ♣, ♥, ♦}
Otra notación habitual para denotar por comprensión es:
A = {m : m es un entero, y 1 ≤ m ≤ 5}
B = {c : c es un color de la bandera de México}...
Regístrate para leer el documento completo.