Estadistica

Solo disponible en BuenasTareas
  • Páginas : 19 (4530 palabras )
  • Descarga(s) : 0
  • Publicado : 21 de enero de 2011
Leer documento completo
Vista previa del texto
INDICE
TEMA 1: DISTIBUCIONES ESTADISTICAS
1.1: DISTRIBUCIONES DE PROBABILIDAD
1.2: VARIABLES AREATORIAS
1.2.1: TIPOS DE VARIABLE AREATORIAS
1.3: VARIABLES DISCRETAS
1.4: VARIABLES CONTINUAS
TEMA 2: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA
2.1: DISTRIBUCION BINOMINAL
2.2: DISTRIBUCION POISSON
TEMA 3:DISTRIBUCION DE PROBABILIDAD DE VARIABLE CONTINUA
3.1: DISTRIBUCION NORMAL
3.2: DISTRIBUCION EXPONENCIAL
TEMA 4: LEY DE LOS GRANDES NUMEROS
NUMEROS INDICE
TIPOS DE NUMEROS INDICE
INDICES PONDERADOS
INDICES DE PRECIOS AL CONSUMIDOR

INTRODUCCION
La estadística es una ciencia referente a la recolección, análisis e interpretación de datos, ya sea para ayudar enla resolución de la toma de decisiones o para explicar condiciones regulares o irregulares de algún fenómeno o estudio aplicado, de ocurrencia en forma aleatoria o condicional. Sin embargo estadística es más que eso, en otras palabras es el vehículo que permite llevar a cabo el proceso relacionado con la investigación científica.
También se denominan estadísticas (en plural) a los datosestadísticos.
Distribución normal.
Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad. Se usa para la toma de decisiones en áreas de negocios o instituciones gubernamentales.
La estadística se divide en dos grandes áreas:
* La estadística descriptiva, se dedica a los métodos de recolección,descripción, visualización y resumen de datos originados a partir de los fenómenos de estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de parámetros estadísticos son: la media y la desviación estándar. Algunos ejemplos gráficos son: histograma, pirámide poblacional, clústers, entre otros.
* La estadística inferencial, se dedica a la generación de los modelos,inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la población bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas si/no (prueba de hipótesis), estimaciones de características numéricas (estimación), pronósticos de futurasobservaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión). Otras técnicas de modelamiento incluyen anova, series de tiempo y minería de datos.
Ambas ramas (descriptiva e inferencial) comprenden la estadística aplicada. Hay también una disciplina llamada estadística matemática, a la que se refiere a las bases teóricas de la materia. Lapalabra «estadísticas» también se refiere al resultado de aplicar un algoritmo estadístico a un conjunto de datos, como en estadísticas económicas, estadísticas criminales, entre otros.

DISTRIBUCIONES DE PROBABILIDAD
En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cadasuceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los eventos rango de valores de la variable aleatoria.
Cuando la variable aleatoria toma valores en el conjunto de los números reales, la distribución de probabilidad está completamente especificada por la función de distribución, cuyovalor en cada real x es la probabilidad de que la variable aleatoria sea menor o igual que x.
Dada una variable aleatoria todos son puntos , su función de distribución, , es

Por simplicidad, cuando no hay lugar a confusión, suele omitirse el subíndice y se escribe, simplemente,
Propiedades
Como consecuencia casi inmediata de la definición, la función de distribución:
* Es una función...
tracking img