Funciones trigonometricas

Solo disponible en BuenasTareas
  • Páginas : 3 (560 palabras )
  • Descarga(s) : 0
  • Publicado : 17 de enero de 2011
Leer documento completo
Vista previa del texto
FUNCIONES TRIGONOMÉTRICAS INVERSAS DE UN ANGULO

Hemos visto que conocido el valor de una función trigonométrica para ángulos agudos, es posible hallar el valor del ángulo mediante las funcionesarco seno, arco coseno , arco tangente.

Nuestro objetivo es ahora, calcular estas funciones para ángulos del segundo, tercero y cuarto cuadrante, para lo que debemos tener en cuenta el signo de lasfunciones trigonométricas seno, coseno y tangente.

Observemos que las calculadoras científicas devuelven:

 mediante la función arc sen
- si sen  > 0 , un ángulo  del primercuadrante,
- si sen  < 0 , un ángulo  del cuarto cuadrante,

 mediante la función arc cos
- si cos  > 0 , un ángulo  del primer cuadrante,
- si cos  < 0 , un ángulo  del segundocuadrante,

 mediante la función arc tg
- si tg  > 0 , un ángulo  del primer cuadrante,
- si tg  < 0 , un ángulo  del cuarto cuadrante.

sen cos tg

Si el ángulo que nos interesa nose encuentra en el cuadrante que la calculadora nos devuelve, debemos hacer la reducción correspondiente.

Ejemplo: Calcular  sabiendo que sen  = 0,83867 y  está en el segundocuadrante.

Operando con la calculadora obtenemos
 = arc sen 0,83867  57º

ángulo que pertenece al primer cuadrante.

Observemos en la figura que los triángulos y son congruentes, puesson simétricos respecto del eje y, X = (x , 0) y X’ = (- x , 0).

Luego, sen  = = sen . Para calcular , que es el ángulo que nos interesa, basta observar del dibujo que = 180º -   180º - 57º = 123º

Ejemplos:
1) Calcular el ángulo  sabiendo que sen  = - 0,5 y  está en el cuarto cuadrante.

Con la calculadora obtenemos:
 = arc sen (-0,5) = - 30º

Aquí el signo menos delante del valor del ángulo significa, que el mismo se ha medido en sentido de las agujas del reloj.
De la figura se obtiene que:

 = 360º - 30º = 330º

2)...
tracking img