Analisis combinatorio

Solo disponible en BuenasTareas
  • Páginas : 20 (4788 palabras )
  • Descarga(s) : 43
  • Publicado : 23 de mayo de 2010
Leer documento completo
Vista previa del texto
ANALISIS COMBINATORIO

Combinaciones, Variaciones y Permutaciones. Para aplicar la Regla de Laplace, el cálculo de los sucesos favorables y de los sucesos posibles a veces no plantea ningún problema, ya que son un número reducido y se pueden calcular con facilidad:

a) Combinaciones, determina el número de subgrupos de 1, 2, 3, etc. elementos que se pueden formar con los n elementos de unanuestra. Cada subgrupo se diferencia del resto en los elementos que lo componen, sin que influya el orden. Para calcular el número de combinaciones se aplica
[pic]

El termino n! se denomina factorial de n y es la multiplicación de todos los números que van desde n hasta 1. Ejemplo, 4! = 4*3*2*1 = 24
La expresión Cm,n representa las combinaciones de m elementos, formando subgruposde n elementos. Ejemplo, C10,4 son las combinaciones de 10 elementos agrupándolos en subgrupos de 4 elementos,
[pic]

Es decir, podríamos formar 210 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

b) Variaciones, calcula el número de subgrupos de 1, 2, 3, etc. elementos que se pueden establecer con los n elementos de una muestra. Cada subgrupo se diferencia delresto en los elementos que lo componen o en el orden de dichos elementos (es lo que le diferencia de las combinaciones). Para calcular el número de variaciones se aplica,
[pic]

La expresión Vm,n representa las variaciones de m elementos, formando subgrupos de n elementos. En este caso, como vimos en la anterior, un subgrupo se diferenciará del resto, bien por los elementos que loforman, o bien por el orden de dichos elementos. Ejemplo V10,4 son las variaciones de 10 elementos agrupándolos en subgrupos de 4 elementos,
[pic]

Es decir, podríamos formar 5.040 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

c) Permutaciones, calcula las posibles agrupaciones que se pueden establecer con todos los elementos de un grupo, por lo tanto, lo quediferencia a cada subgrupo del resto es el orden de los elementos. Para calcular el número de permutaciones se aplica,
[pic]

La expresión Pm representa las permutaciones de m elementos, tomando todos los elementos. Los subgrupos se diferenciaran únicamente por el orden de los elementos. Ejemplo, P10 son las permutaciones de 10 elementos,
[pic]

Es decir, tendríamos 3.628.800formas diferentes de agrupar 10 elementos.
Vamos a analizar ahora que ocurriría con el cálculo de las combinaciones, de las variaciones o de las permutaciones en el supuesto de que al formar los subgrupos los elementos pudieran repetirse. Por ejemplo, tenemos bolas de 6 colores diferentes y queremos formar subgrupos en los que pudiera darse el caso de que 2, 3, 4 o todas las bolas del subgrupotuvieran el mismo color. En este caso no podríamos utilizar las fórmulas que vimos en la anterior.

a) Combinaciones con repetición. Para calcular el número de combinaciones con repetición se aplica,
[pic]

Ejemplo, C'10,4 son las combinaciones de 10 elementos con repetición, agrupándolos en subgrupos de 4, en los que 2, 3 o los 4 elementos podrían estar repetidos,
[pic]Es decir, podríamos formar 715 subgrupos diferentes de 4 elementos.

b) Variaciones con repetición. Para calcular el número de variaciones con repetición se aplica,
[pic]

Ejemplo, V'10,4 son las variaciones de 10 elementos con repetición, agrupándolos en subgrupos de 4 elementos,
[pic]

Es decir, podríamos formar 10.000 subgrupos diferentes de 4 elementos.

c)Permutaciones con repetición. Para calcular el número de permutaciones con repetición se aplica,
[pic]

Son permutaciones de m elementos, en los que uno de ellos se repite x1 veces, otro x2 veces y así sucesivamente hasta uno que se repite xk veces. Ejemplo, Calcular las permutaciones de 10 elementos, en los que uno de ellos se repite en 2 ocasiones y otro se repite en 3 ocasiones,...
tracking img