Calculo

Solo disponible en BuenasTareas
  • Páginas : 14 (3330 palabras )
  • Descarga(s) : 0
  • Publicado : 30 de septiembre de 2010
Leer documento completo
Vista previa del texto
Coordenadas polares
Si bien existen ejemplos de que los conceptos de ángulo y radio se conocen y manejan desde la antigüedad, no es sino hasta el siglo XVII, posterior a la invención de la geometría analítica, en que se puede hablar del concepto formal de sistema coordenadas polares.
Los primeros usos empíricos de relaciones entre ángulos y distancias se relacionan con aplicaciones a lanavegación y el estudio de la bóveda celeste. El astrónomo Hiparco (190 a. C.-120 a. C.) creó una tabla trigonométrica que daba la longitud de una cuerda en función del ángulo y existen referencias del uso de coordenadas polares para establecer la posición de las estrellas.1 En Sobre las espirales, Arquímedes describe la espiral de Arquímedes, una función cuyo radio depende del ángulo. Sin embargo,estas aplicaciones no hacían uso de un sistema de coordenadas como medio de localizar puntos en el plano, situación análoga al estado de la geometría antes de la invención de la geometría analítica.
En tiempos modernos, Grégoire de Saint-Vincent y Bonaventura Cavalieri introdujeron de forma independiente el concepto a mediados del siglo XVII en la solución de problemas geométricos. Saint-Vincentescribió sobre este tema en 1625 y publicó sus trabajos en 1647, mientras que Cavalieri publicó sus escritos en 1635 y una versión corregida en 1653. Cavalieri utilizó en primer lugar las coordenadas polares para resolver un problema relacionado con el área dentro de una espiral de Arquímedes. Blaise Pascal utilizó posteriormente las coordenadas polares para calcular la longitud de arcosparabólicos.
Sin embargo, el concepto abstracto de sistema de coordenada polar se debe a Sir Isaac Newton, quien en su Método de las fluxiones escrito en 1671 y publicado en 1736, introduce ocho nuevos sistemas de coordenadas (además de las cartesianas) para resolver problemas relativos a tangentes y curvas, uno de los cuales, el séptimo, es el de coordenadas polares.2 En el periódico Acta Eruditorum JacobBernoulli utilizó en 1691 un sistema con un punto en una línea, llamándolos polo y eje polar respectivamente. Las coordenadas se determinaban mediante la distancia al polo y el ángulo respecto al eje polar. El trabajo de Bernoulli sirvió de base para encontrar el radio de curvatura de ciertas curvas expresadas en este sistema de coordenadas.
El término actual de coordenadas polares se atribuyea Gregorio Fontana, y fue utilizado por los escritores italianos del siglo XVIII. El término aparece por primera vez en inglés en la traducción de 1816 efectuada por George Peacock del Tratado del cálculo diferencial y del cálculo integral de Sylvestre François Lacroix,3 mientras que Alexis Clairault fue el primero que pensó en ampliar las coordenadas polares a tres dimensiones.Representación de puntos con coordenadas polares


Los puntos (3,60º) y (4,210º) en un sistema de coordenadas polares.
En la figura se representa un sistema de coordenadas polares en el plano, el centro de referencia (punto O) y la línea OL sobre la que se miden los ángulos. Para referenciar un punto se indica la distancia al centro de coordenadas y el ángulo sobre el eje OL.
• El punto (3, 60º) indicaque está a una distancia de 3 unidades desde O, medidas con un ángulo de 60º sobre OL.
• El punto (4, 210º) indica que está a una distancia de 4 unidades desde O y un ángulo de 210º sobre OL.
Un aspecto importante del sistema de coordenadas polares, que no está presente en el sistema de coordenadas cartesianas, es que un único punto del plano puede representarse con un número infinito decoordenadas diferentes. Se puede decir entonces que en el sistema de coordenadas polares no hay una función biyectiva entre los puntos del espacio y las coordenadas. Esto ocurre por dos motivos:
• Un punto, definido por un ángulo y una distancia, es el mismo punto que el indicado por ese mismo ángulo más un número de revoluciones completas y la misma distancia. En general, el punto (r, θ) se puede...
tracking img