Conicas

Solo disponible en BuenasTareas
  • Páginas : 49 (12142 palabras )
  • Descarga(s) : 0
  • Publicado : 5 de enero de 2011
Leer documento completo
Vista previa del texto
9
Página 213

LUGARES GEOMÉTRICOS. CÓNICAS

REFLEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas


Completa la siguiente tabla, en la que a es el ángulo que forman las generatrices con el eje, e, de la cónica y b el ángulo del plano π con e.
b = 90° π PASA POR
EL VÉRTICE

b>a

b=a

ba b=a b 5 8 r1 es exterior a C. = 20 = 4 < 5 8 r2 y C se cortan en dos puntos. 5

|4 ·3 + 3(–4) + 20|

|3 · 3 – 4(–4)|

√9 + 16
|–4 + 2|

=

25 = 5 8 r3 y C son tangentes. 5

√0 + 1

=

2 = 2 < 5 8 r4 y C se cortan en dos puntos. 1

Página 219
1. Halla la potencia de P (–3, 8) a las circunferencias: C1: x 2 + y 2 – 14x + 20 = 0 C2: O (4, –3), r = 20 Di si P es interior o exterior a C1 y a C2. C1: x 2 + y 2 – 14x + 20 = 0 8 O1 = (7, 0), r1 = √49 – 20 = √29 C2: O(4, –3), r = 20 P (–3, 8) P (P a C1) = (7 + 3)2 + (0 – 8)2 – (√29 )2 = 100 + 64 – 29 = 135 > 0 8 8 P es exterior a C1. P (P a C2) = (4 + 3)2 + (–3 – 8)2 – (20)2 = 49 + 121 – 400 = –230 < 0 8 8 P es interior a C2.
Unidad 9. Lugares geométricos. Cónicas

5

2. Halla el eje radical de estas circunferencias: C1: x 2 + y 2 – 4x + 12y – 11 = 0 C2: x 2 + y 2 – 6y = 0 Comprueba que es una rectaperpendicular a la línea de sus centros. Calculamos las potencias de un punto genérico P (x, y) a C1 y a C2: P (P a C1) = x 2 + y 2 – 4x + 12y – 11 = 0 ° ¢ Igualamos ambas expresiones: P (P a C2) = x 2 + y 2 – 6y = 0 £ x 2 + y 2 – 4x + 12y – 11 = x 2 + y 2 – 6y 8 –4x + 18y – 11 = 0 Ecuación del eje radical: 4x – 18y + 11 = 0 8 m = Centro de C1 8 O1 = (2, –6) ° Ä8 O O = (–2, 9) 8 Centro de C2 8 O2 = (0,3) ¢ 1 2 £ 8 La pendiente de la recta que une O1 y O2 es m' = – Como m ·m' = pendiculares. 9 . 2 4 2 = 18 9

()( )

2 9 · – = –1, el eje radical y la recta que une O1 y O2 son per9 2

Página 221
1. Halla la ecuación de la elipse de focos F1(4, 0), F2(– 4, 0) y cuya constante es 10. Una vez puesta la ecuación inicial, pasa una raíz al segundo miembro, eleva al cuadrado (¡atención con eldoble producto!), simplifica, aísla la raíz, vuelve a elevar al cuadrado y simplifica hasta llegar a la ecuación 9x 2 + 25y 2 = 225. Si P (x, y) es un punto de la elipse, entonces: dist (P , F1) + dist (P , F2) = 10 √(x – 4)2 + y 2 + √(x + 4)2 + y 2 = 10 √(x – 4)2 + y 2 = 10 – √(x + 4)2 + y 2 Elevamos al cuadrado: (x – 4)2 + y 2 = 100 + (x + 4)2 + y 2 – 20 √(x + 4)2 + y 2 Operamos: x 2 – 8x + 16 + y2 = 100 + x 2 + 8x + 16 + y 2 – 20 √(x + 4)2 + y 2 20 √(x + 4)2 + y 2 = 16x + 100 5 √(x + 4)2 + y 2 = 4x + 25 Elevamos al cuadrado: 25(x 2 + 8x + 16 + y 2) = 16x2 + 200x + 625 Simplificamos: 25x 2 + 200x + 400 + 25y 2 = 16x 2 + 200x + 625 8 9x 2 + 25y 2 = 225

6

Unidad 9. Lugares geométricos. Cónicas

UNIDAD

9

2. Halla la ecuación de la hipérbola de focos F1(5, 0), F2(–5, 0) y cuyaconstante es 6. Simplifica como en el ejercicio anterior hasta llegar a la expresión 16x 2 – 9y 2 = 144. Si P (x, y) es un punto de la hipérbola, entonces: |dist (P , F1) – dist (P , F2)| = 6 dist (P , F1) – dist (P , F2) = ±6 √(x – 5)2 + y 2 – √(x + 5)2 + y 2 = ±6 √(x + 5)2 + y 2 = ±6 + √(x + 5)2 + y 2 Elevamos al cuadrado: x 2 – 10x + 25 + y 2 = 36 + x 2 + 10x + 25 + y 2 ± 12 √(x + 5)2 + y 2 ±12√(x + 5)2 + y 2 = 20x + 36 ±3 √(x + 5)2 + y 2 = 5x + 9 Elevamos al cuadrado: 9 (x 2 + 10x + 25 + y 2) = 25x 2 + 90x + 81 9 x 2 + 90x + 225 + 9y 2 = 25x 2 + 90x + 81 16x 2 – 9y 2 = 144 3. Halla la ecuación de la parábola de foco F (–1, 0) y directriz r: x = 1. Simplifica hasta llegar a la expresión y 2 = – 4x. Si P (x, y) es un punto de la parábola, entonces: dist (P , F) = dist (P , r) √(x + 1)2 + y2 = |x – 1| Elevamos al cuadrado: x 2 + 2x + 1 + y 2 = x 2 – 2x + 1 Simplificamos: y 2 = –4x

Página 223
1. Una elipse tiene sus focos en los puntos F (5, 0) y F' (–5, 0) y su constante es k = 26. Halla sus elementos característicos y su ecuación reducida. Represéntala. • Semieje mayor: k = 26 8 2a = 26 8 a = 13 — • Semidistancia focal: FF' = 10 8 2c = 10 8 c = 5 • Semieje menor: b 2 = a 2...
tracking img