Velocidad de escape

Solo disponible en BuenasTareas
  • Páginas : 6 (1299 palabras )
  • Descarga(s) : 0
  • Publicado : 10 de noviembre de 2011
Leer documento completo
Vista previa del texto
VELOCIDAD DE ESCAPE

Objetivo:

El objetivo de este proyecto es proponer una solución para determinar por métodos analíticos la velocidad de un objeto que es disparado hacia el espacio y no regrese, además de ilustrar el cambio y escalamiento de variables para expresar en términos diferenciales dicha solución.

*Introducción:

Llamamos velocidad de escape a lavelocidad mínima con la que debe lanzarse un cuerpo para que escape de la atracción gravitatoria de la Tierra o de cualquier otro astro. Esto significa que el cuerpo no volverá a caer sobre la Tierra o astro de partida, quedando en reposo a una distancia suficientemente grande (en principio, infinita) de la Tierra o del astro.

Para demostrar como se llega a la ecuación de “velocidad escape”tomamos como ejemplo una piedra que es lanzada hacia arriba, la piedra acaba su recorrido y regresa a la tierra en virtud de la fuerza gravitatoria debida a la masa de nuestro planeta.
La piedra subirá, alejándose de la superficie mientras su energía cinética supere al potencial gravitatorio de la Tierra. Así, si la piedra tiene masa m, y llamando M a la masa de la Tierra y R a su radio,tendríamos:

Potencial gravitatorio

Energía cinética de la piedra al lanzarla con velocidad v:

Una vez lanzada la piedra hacia arriba a la velocidad V, queda sometida al potencial
gravitatorio , que la va frenando, llegando un instante en el que la piedra se para
e inicia su aproximación al planeta cayendo sobre la superficie de nuevo.
Esto ocurre en general, si la velocidad estádentro de los márgenes cotidianos.

En ese caso, la piedra “escapa” a la acción de dicho potencial, y no regresa a la superficie del planeta. Para que la piedra no regrese existe una condición la cual ocurra que la energía cinética supere al potencial gravitatorio:



la velocidad mínima a la cual escapa, lo que denominaremos “velocidad deescape”
es la velocidad a la que al menos se iguala la energía cinética con el potencial de
gravitación:


Despejando v se obtiene:

Donde:
G es la constante de gravitación universal, igual a:
M es la masa del astro
R es el radio del astro

**Restricción para la ecuación anterior :Desarrollo:

Graficando con la herramienta Dfield se comenzará por obtener el campo de direcciones de la siguiente ecuación diferencial de primer orden:
donde se sabe que ; así como diferentes soluciones particulares, con y=0 y para diferentes valores iniciales de la velocidad con
v= [0.5, 1, 1.5 y 2](grafica: 1)
Físicamente esto no se puede comprobar pero con la herramienta Dfield podemos mencionar que el objeto nunca regresa a la tierra por que su pendiente en el punto tiende a infinito.




Reduciendo el orden de la siguiente ecuación diferencial a un sistema de ecuaciones deprimer orden equivalente y graficando su espacio fase se obtiene:

------------

Aplicando cambio de variables:








Entonces:

o
Donde:Sistema de ecuaciones de primer orden equivalente.



(gráfica 2) Para los dos primeros valores hay una altura (y) max lo cual indica que el objeto regresa a la tierra.
En esta grafica hay dos componentes, por tal motivo no se indetermina una de ellas...
tracking img