Integrales Dobles
1) Calcula las siguientes integrales dobles:
x2 y d(x, y), M = [0, 1] × [0, 1]
(1)
M
(2)
M
(3)
x2
d(x, y), M = [0, 1] × [0, 1]
1 + y2
(log x)y d(x, y), M = [1, e] × [1, e]
M(4)
(log x)y d(x, y), M = (0, 1] × [0, 1]
M
x3 y 3 d(x, y), M = [0, 1] × [0, 1]
(5)
M
x log(xy) d(x, y), M = [2, 3] × [1, 2]
(6)
M
2
2
(ex − ey ) d(x, y), M = [a, b] × [a, b]
(7)
M
(8)
M
1d(x, y), M = [3, 4] × [1, 2]
(x + y)2
y 2 sen(xy) d(x, y), M = [0, 2π] × [0, 1]
(9)
M
x
d(x, y), M = [−π/2 , π/2] × [1, 2].
y
1
π
π
d(x, y), M = [0, ] × [0, ]
2
(1 + x)
2
2
1
3π
d(x, y), M = [0, 10]× [0,
]
2
(1 + x)
2
ey sen
(10)
M
(11)
M
(12)
M
2) Sea f : M −→ R donde M = [−1, 1] × [−1, 1] tal que f (x, −y) = −f (x, y) para todo
(x, y) ∈ M . Probar que
f (x, y) d(x, y) = 0.
M
Calcula
Msen(xy) d(x, y).
3) Calcula las siguientes integrales dobles:
(1)
M
√x
y+1
(2)
M
x d(x, y), M = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ ex }
(3)
x2
M y2
d(x, y), M = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
d(x,y), M = {(x, y) : 1 ≤ x ≤ 2, x−1 ≤ y ≤ x}
1
(4)
M
ex/y d(x, y), M = {(x, y) : 1/2 ≤ y ≤ 1, 0 ≤ x ≤ y 2 }
(5)
M
xy 2 d(x, y), M = {(x, y) : |y| ≤ x ≤ 1}
(6)
M
xy d(x, y), M es la regi´ondelimitada por las curvas y = x e y = x2 .
(7)
(8)
xy − y 2 d(x, y), donde M es el tri´angulo de v´ertices (0, 0), (1, 1)
y (10, 1).
M
M
x d(x, y), M es el subconjunto del semiplano x ≥ 0 cuyafrontera son las curvas
x2
y2
−
=1
a2
b2
(9)
M
x2
y2
+
= 1.
4a2
9b2
y
|x2 − y + 1| d(x, y), M = {(x, y) : y ≥ 0, x2 + y 2 ≤ 4}
(10)
M
|x + y| d(x, y), M = {(x, y) : |x| ≤ 1, |y| ≤ 1}
(11)
M
xy dxdy con M = {(x, y) ∈ R : 0 ≤ x ≤ 2, 0 ≤ y ≤ x/2}
(12)
M
x2 y dx dy con M = {(x, y) ∈ R : x ≥ 0, y ≥ 0, x + y ≤ 1}
(13)
M
y 3 dx dy con M = {(x, y) ∈ R : x ≤ a, y 2 ≤ 2px}, a > 0, p > 0
(14)M
y/(1 + x3 ) dx dy con M = {(x, y) ∈ R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x2 + y 2 ≥ 1}
(15)
M
ex+y dx dy con M el tri´angulo de v´ertices (1, 0), (0, 1) y (0, −1).
2
2
2
2
(16)
xy dx dy con M el...
Regístrate para leer el documento completo.