Exponente entero Cuando el exponente es un número natural n, este indica las veces que aparece a multiplicando, siendo a un número cualesquiera: (1) Esta definición puede aplicarse, tanto a números reales o complejos, así como a otras estructuras algebraicas más abstractas, como pueden ser, por ejemplo, matrices cuadradas. Multiplicación de potencias de igual base El producto de dos potencias que tienen la misma base es igual a una potencia de dicha base que tiene como exponente la suma de los...
886 Palabras | 4 Páginas
Leer documento completoMódulo de Matemática #1 Nivel: 8vo. Grado Facilitador: Humberto A. Guerra R. Objetivo: Poner en práctica los conocimientos de las operaciones básicas con números enteros. Aplicar los conceptos matemáticos de Potenciación y Radicación. Contenido: 1. Problemas sobre números enteros 2. Potenciación PROBLEMA Es una cuestión práctica en la que hay que determinar ciertas cantidades desconocidas llamadas incógnitas, conociendo sus relaciones con cantidades conocidas llamadas...
852 Palabras | 4 Páginas
Leer documento completoMáximo común divisor y se calcula descomponiendo en números primos y eligiendo de las factorizaciones los “comunes, sin repetir, al menor exponente” El m.c.m. de varios números es el mínimo común múltiplo y se calcula descomponiendo en números primos y eligiendo de las factorizaciones los “comunes y los no comunes (todos), sin repetir, al mayor exponente” Ejemplo: M.c.d. y m.c.m. de 60, 96 60 2 96 2 30 2 48 2 15 5 24 2 3 3 12 2 1 6 2 3 3 1 60 = 22 · 3 · 5 Ejercicio: M.c...
1207 Palabras | 5 Páginas
Leer documento completoLa potenciación es una operación matemática entre dos términos denominados: base a y n exponente n . Se escribe a y se lee usualmente como « a elevado a n » o « a elevado a la n » y el sufijo en femenino correspondiente al exponente n . Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente pueden pertenecer a conjuntos diferentes, en un anillo...
971 Palabras | 4 Páginas
Leer documento completoEl término exponente tiene diversos usos y significados. Exponente es aquel o aquello que expone (un verbo que hace referencia a presentar algo, darlo a conocer). Por ejemplo: “Este líquido será el exponente de cómo el calor puede alterar el estado de una sustancia”, “Tu tío es el exponente que ejemplifica cómo una persona, con un poco de suerte, puede llegar a la cima”. Un exponente es, por otra parte, un prototipo. Se trata de una cosa o una persona representativa de lo más característico de algún...
753 Palabras | 4 Páginas
Leer documento completoicaDefinición Se llama potencia a una expresión de la forma , donde a es la base y n es el exponente. Su definición varía según el conjunto numérico al que pertenezca el exponente. Exponente entero Cuando el exponente es un número natural n, este indica las veces que aparece a multiplicando, siendo a un número cualesquiera: (1) Esta definición puede aplicarse, tanto a números reales o complejos, así como a otras estructuras algebraicas más abstractas, como pueden ser, por ejemplo, matrices...
686 Palabras | 3 Páginas
Leer documento completola base y n es el exponente. Su definición varía según el conjunto numérico al que pertenezca el exponente. La potenciación es una operación matemáticaentre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente pueden pertenecer...
1297 Palabras | 6 Páginas
Leer documento completoPotenciación Se llama potencia a una expresión de la forma , donde a es la base y n es el exponente. Su definición varía según el conjunto numérico al que pertenezca el expone La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese...
1672 Palabras | 7 Páginas
Leer documento completoPOTENCIACION Una potencia no es mas que el producto de una cantidad por si misma, un numero determinado de veces. Así expresada la idea de potencia constituye la base de los sistemas de numeración posicional, ya que en estos los sucesivos ordenes de unidades corresponden a las potencias sucesivas de la base; Así, en el sistema decimal las decenas, las centenas, los millares, etc, se corresponden con las cantidades 10, 10∙10 =100, 10∙10∙10=1000 etc. La nocion de potencia sugiere el concepto...
1619 Palabras | 7 Páginas
Leer documento completoPOTENCIACION La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n. Se escribe an, y se lee: «a elevado a n». Su definición varía según el conjunto numérico al que pertenezca el exponente: * Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo varias veces: el exponente determina la cantidad de veces. Por ejemplo: . * cuando el exponente es un número entero negativo, equivale a la fracción inversa de...
1732 Palabras | 7 Páginas
Leer documento completoLa potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente pueden pertenecer a conjuntos diferentes, en un anillo totalmente general la base será un elemento del anillo pero...
1392 Palabras | 6 Páginas
Leer documento completoPotenciación De Wikipedia, la enciclopedia libre Saltar a: navegación, búsqueda Gráfica de varias funciones potencia. La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente...
1345 Palabras | 6 Páginas
Leer documento completoPotenciación La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe a^n y se lee usualmente como «a elevado a n» o «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente pueden pertenecer a conjuntos diferentes, en un anillo totalmente general la base será un elemento del...
553 Palabras | 3 Páginas
Leer documento completoPotenciación De Wikipedia, la enciclopedia libre Saltar a: navegación, búsqueda Gráfica de varias funciones potencia. La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la n» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Nótese que en el caso de la potenciación la base y el exponente...
756 Palabras | 4 Páginas
Leer documento completoPotenciación La potenciación es una forma abreviada de escribir un producto formado por varios factores iguales. 7 • 7 • 7 • 7 = 74 Base La base de una potencia es el número que multiplicamos por sí mismo, en este caso el 7. Exponente El exponente de una potencia indica el número de veces que multiplicamos la base, en el ejemplo es el 4. Potencias de exponente natural 1. Un número elevado a 0 es igual a 1. a0 = 1 60 = 1 2. Un número elevado a 1 es igual a sí mismo. a1 = a 61 = 6 ...
1507 Palabras | 7 Páginas
Leer documento completoPotenciación De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n. Se escribe an, y se lee: «a elevado a n». Su definición varía según el conjunto numérico al que pertenezca el exponente: Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo varias veces: el exponente determina la cantidad de veces. Por ejemplo: . cuando el exponente es un...
543 Palabras | 3 Páginas
Leer documento completoLa potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n. Se escribe an, y se lee: «a elevado a n». Su definición varía según el conjunto numérico al que pertenezca el exponente: Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo varias veces: el exponente determina la cantidad de veces. Por ejemplo: . * cuando el exponente es un número entero negativo, equivale a la fracción inversa de la base pero con...
1000 Palabras | 4 Páginas
Leer documento completoINTRODUCCIÓN La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Su definición varía según el conjunto numérico al que pertenezca el exponente: Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo...
504 Palabras | 3 Páginas
Leer documento completoPotenciación La potenciación es una operación matemática, y que se lee "a elevado a n", que involucra dos números: la base a y el exponente n. Su definición varía según el conjunto numérico al que pertenezca el exponente: Cuando el exponente es un número natural, la potenciación corresponde a una multiplicación de varios factores iguales: el exponente determina la cantidad de veces que la base se multiplica por sí misma. Por ejemplo: . En general: cuando el exponente es un entero negativo...
776 Palabras | 4 Páginas
Leer documento completoExponente entero Cuando el exponente es un número natural n, este indica las veces que aparece a multiplicando por sí mismo, siendo a un número cualquiera: (1) Esta definición puede aplicarse, tanto a números reales o complejos, así como a otras estructuras algebraicas más abstractas, como pueden ser, por ejemplo, matrices cuadradas. Multiplicación de potencias de igual base[editar · editar código] El producto de dos potencias que tienen la misma base es igual a una potencia de dicha base...
771 Palabras | 4 Páginas
Leer documento completoPotenciación La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Su definición varía según el conjunto numérico al que pertenezca el exponente: Cuando el exponente es un número natural, equivale a multiplicar un número por...
1327 Palabras | 6 Páginas
Leer documento completoPotenciación De Wikipedia, la enciclopedia libre Saltar a navegación, búsqueda La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n. Se escribe an, y se lee: «a elevado a n». Su definición varía según el conjunto numérico al que pertenezca el exponente: • Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo varias veces: el exponente determina la cantidad de veces. [pic] Por ejemplo: [pic]. ...
1025 Palabras | 5 Páginas
Leer documento completoEXPONENTES La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. LAS LEYES DE EXPONENTES LEY DE LA MULTIPLICACION: al multiplicar dos potencias de igual base se copia la base y se suman los exponentes, para tener el exponente del producto...
855 Palabras | 4 Páginas
Leer documento completoExponente En la matemática, un exponente es una expresión algebraica o un número que denota la potencia a que se debe elevar otra expresión u otro número. Se coloca en la parte superior derecha de aquello que se desea elevar. El exponente de un número muestra cuántas veces el número se va a utilizar en la multiplicación. Se escribe como un número pequeño arriba y a la derecha del número base. Ejemplo: 82 = 8 × 8 = 64 (Otros nombres para el índice son índice o potencia) LAS LEYES DE EXPONENTES...
987 Palabras | 4 Páginas
Leer documento completo31PBHDO19J OXKUTZCAB, YUCATAN UNIDAD 1 ENSAYO “POTENCIACION” PRESENTADO POR: Kevin Chi Caamal 26/10/2011 INTRODUCCION. La potenciacion es la multiplicacion de un numero por el mismo numero tantas veces se indique. En terminos mas entendibles la potenciacion es una operacion matematica en tre dos terminos denominadosbase a y exponente n, la base de una potencia es el número que multiplicamos por sí mismo, el exponente de una potencia indica el número de veces que multiplicamos...
943 Palabras | 4 Páginas
Leer documento completo1.- EXPONENTES y RADICALES - Leyes de los exponentes. Para todo a,b " R, a"0 y todo n,m " R y bases diferentes de 0 para exponentes negativos o cero. am.an=am+n (am)n=am.n (a.b)m=am.bm - Expresiones exponenciales. POTENCIA.- Definición: Llamamos potencia de un número al producto de tomarlo como factor tantas veces como queremos es, pues, una multiplicación en la que los factores son siempre el mismo número. Ejemplo: exponente base 43=64 potencia Base: Al número...
1080 Palabras | 5 Páginas
Leer documento completonúmeros Enteros (Z) Potenciación en el conjunto de los números Enteros (Z) Potenciación en Z Números enteros (Z) La Potenciación en Z, así como en N, no es más que una multiplicación abreviada. Se define así: Si “a” y “b” son dos números enteros, se puede escribir la potenciación mediante: ab = c, donde los elementos son la base (a), el exponente (b) y el producto o potencia (c). Recordemos: Exponente Base Producto o Potencia ab = c Potenciación en Z Números enteros (Z) Una...
873 Palabras | 4 Páginas
Leer documento completoPotenciación La potenciación es una forma abreviada de escribir un producto formado por varios factores iguales. 7 · 7 · 7 · 7 = 74 Base La base de una potencia es el número quemultiplicamos por sí mismo, en este caso el 7. Exponente El exponente de una potencia indica el númerode veces que multiplicamos la base, en el ejemplo es el 4. Potencias de exponente natural 1. Un número elevado a 0 es igual a 1. a0 = 1 60 = 1 2. Un número elevado a 1 es igual a sí mismo. a1 = a 61 = 6 3. Producto...
686 Palabras | 3 Páginas
Leer documento completo1. ¿Qué es la potenciación? La potenciación es una forma abreviada de escribir un producto formado por varios factores iguales. Se realiza para hallar una potencia, que es el producto de un número multiplicado por sí mismo una determinada cantidad de veces. La potencia tiene dos componentes principales: base y exponente. La base es el número que se repite en la operación y el exponente expresa la cantidad de veces que se repite la base en la operación. Por ejemplo, la potencia de 24 = 2*2*2*2 =...
1070 Palabras | 5 Páginas
Leer documento completoPotenciación La potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Su definición varía según el conjunto numérico al que pertenezca el exponente: Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo...
530 Palabras | 3 Páginas
Leer documento completoLa potenciación es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios sumandos iguales, (la potenciación se considera una multiplicación abreviada). En la nomenclatura de la potenciación se diferencian dos partes, la base y el exponente, que se escribe en forma de superíndice. El exponente determina la cantidad de veces que la base se multiplica por sí misma. Por ejemplo: en general: Una de las definiciones de la potenciación, por recursión...
700 Palabras | 3 Páginas
Leer documento completoMATEMÁTICA: Números Racionales: POTENCIACIÓN y RADICACIÓN- 2º Año POTENCIACIÓN: Es la operación que indica la multiplicación sucesiva de un mismo número b (llamado base), tantas veces como lo indique un número n (llamado exponente) p = bn b = base b n = b . b . b . . . . . . . . . . . . .b = p n = exponente p = potencia o resultado n veces (3)4 = 3 . 3 . 3 . 3 = 81 Ejemplos: 2 5 5 4 4 (0,2)3 = (0,2) . (0,2) . (0,2) =0,008 5 25 ...
1734 Palabras | 7 Páginas
Leer documento completoUnidad N°4 – Potenciación y radicación de números enteros Potenciación: La potenciación es una forma abreviada de escribir una multiplicación de factores iguales. Ejemplo: 32=3.3=9 23=2.2.2=8 24=2.2.2.2=16 54=5.5.5.5=625 an=a.a.a…a n veces La potenciación es una operación entre dos números a y n, llamados base y exponente, respectivamente. base an exponente Todo número, distinto de 0, elevado al exponente 0 es igual a 1. Si la base de una potencia es un número entero, este puede ser...
642 Palabras | 3 Páginas
Leer documento completoMATEMÁTICA: Números Racionales: POTENCIACIÓN y RADICACIÓN POTENCIACIÓN: Es la operación que indica la multiplicación sucesiva de un mismo número b (llamado base), tantas veces como lo indique un número n (llamado exponente) p = bn b = base bn = b . b . b . . . . . . . . . . . . .b = p n = exponente p = potencia o resultado n veces (3)4 = 3 . 3 . 3 . 3 = 81 Ejemplos: 2 5 5 4 4 (0,2)3 = (0,2) . (0,2) . (0,2) =0,008 5 25 4 16 ...
1657 Palabras | 7 Páginas
Leer documento completo| | Potenciación y sus propiedades Definición Es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios sumandos iguales. En la nomenclatura de la potenciación se diferencian dos partes, la base a y el exponente n, que se escribe en forma de superíndice. El exponente determina la cantidad de veces que la base se multiplica por sí misma: Se escribe an, y se lee: «a elevado a n». Cuando el exponente es un número natural, equivale a multiplicar...
562 Palabras | 3 Páginas
Leer documento completoPOTENCIACION Y RADICACIÓN OBJETIVOS: Resolver ejercicios fraccionarios. Reducir, multiplicar y racionalizar expresiones con radicales. con expresiones cuyos exponentes sean enteros y INTRODUCCION: En este taller se proponen una serie de ejercicios que nos permitirán mecanizar las propiedades de la potenciación y radicación; además, la relación entre exponentes y raíces, de tal manera, que complementemos el estudio de las expresiones algebraicas. DESARROLLO: 1. Si a R y n Z+, se...
1275 Palabras | 6 Páginas
Leer documento completoLa Potenciación Y Sus Propiedades. La potenciación es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios sumandos iguales, (la potenciación se considera una multiplicación abreviada). En la nomenclatura de la potenciación se diferencian dos partes, la base y el exponente, que se escribe en forma de superíndice. El exponente determina la cantidad de veces que la base se multiplica por sí misma. Por ejemplo: En general: Normalmente...
1482 Palabras | 6 Páginas
Leer documento completoLa potenciación es una operación matemática entre dos términos denominados: base a y exponente n. Se escribe an y se lee usualmente como «a elevado a n» o «a elevado a la» y el sufijo en femenino correspondiente al exponente n. Hay algunos números especiales, como el 2, al cuadrado o el 3, que le corresponde al cubo. Propiedades de la potenciación Potencia de exponente 0 Un número distinto de 0 elevado al exponente 0 da como resultado la unidad (1), puesto que: Potencia de exponente 1 Toda...
1397 Palabras | 6 Páginas
Leer documento completo1. Definición EN MUCHAS SITUACIONES SE PRESENTA LA NECESIDAD DE MULTIPLICAR UN NÚMERO POR SÍ MISMO VARIAS VECES. Ejemplo: Sin embargo, para abreviar podemos escribir: 25 = 32 , que es lo mismo que 25 = 32 [pic] esta operación recibe el nombre de potenciación. Potenciación es la operación que consiste en multiplicar un número llamado base tantas veces como lo indica otro número llamado exponente. [pic] Los números o letras que aparecen en una potenciación cumplen...
602 Palabras | 3 Páginas
Leer documento completoPOTENCIACIÓN OSMAN ANDREY TORO HERREÑO CALCULO DIFERENCIAL UNIVERSIDAD MINUTO DE DIOS TECNOLOGÍA EN LOGÍSTICA JORNADA NOCTURNA ZIPAQUIRÁ 2015 DEFINICIÓN Es una forma abreviada de escribir un producto formado por varios factores iguales. Es la operación mediante la cual se expresa la multplicación de un factor por sí mismo, una cierta cantdad de veces. A ese factor se le llama “base” de la potencia y a la cantdad de veces que ha de multplicarse por sí mismo, se le llama “exponente” de la potencia...
534 Palabras | 3 Páginas
Leer documento completoNumeros enteros Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3, ...), los negativos de los números naturales (..., −3, −2, −1) y al cero, 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2, ...) y que el cero. Para resaltar la diferencia entre positivos y negativos, a veces también se escribe un signo «más» delante de los positivos: +1, +5, etc. Cuando no...
1619 Palabras | 7 Páginas
Leer documento completoun división se llaman, D, dividendo y d divisor. Al resultado, c, lo llamamos cociente. Propiedades de la división 1. División exacta D = d · c 2. División entera D = d · c + r 3. No es una operación interna 4. No es Conmutativa. 5. Cero dividido entre cualquier número da cero. 6. No se puede dividir por 0. Números enteros (Z) Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones...
1188 Palabras | 5 Páginas
Leer documento completoCONCLUSION Y BIOGRAFIAS______________________________________9 INTRODUCCION EN ESTE TRABAJO DESCRIBIREMOS LOS CONCEPTOS DE LA LEY DE EXPONENTES, RADICACION, RACIONALIZACION Y NOTACION CIENTIFICA, ESTOS ABARCAN LOS SUBTEMAS Y DEFINICIONES DE LA CUAL SE COMPONEN DICHOS TEMAS. SE TRATA DE EXPLICAR COMO DESARROLLAR CADA TEMA POR MEDIO DE LAS DEFINICIONES Y EJERCICIOS PARA QUE TENGA UNA MAYOR HABILIDAD ESPERANDO QUE ESTA INVESTIGACION LE PERMITA TENER UN MAYOR CONOCIMIENTO Y COMPRENSION EN...
1183 Palabras | 5 Páginas
Leer documento completoRadicación La radicación es la operación inversa a la potenciación. Y consiste en que dados dos números, llamados radicando e índice, hallar un tercero, llamado raíz, tal que, elevado al índice, sea igual al radicando. Definición En la raíz cuadrada el índice es 2, aunque en este caso se omite. Consistiría en hallar un número conocido su cuadrado. Cuadrada La raíz cuadrada de un número, a, es exacta cuando encontramos un número, b, que elevado al cuadrado es igual al radicando:...
537 Palabras | 3 Páginas
Leer documento completoExponentes Los exponentes también se llaman potencias o índices El exponente de un número nos dice cuántas veces se usa el número en una multiplicación. En este ejemplo: 82 = 8 × 8 = 64 En palabras: 82 se puede leer "8 a la segunda potencia", "8 a la potencia 2" o simplemente "8 al cuadrado" Así que, en general: an te dice que multipliques a por sí mismo, y hay n de esos a's: Es una operación matemática entre dos términos denominados: base a y exponente n. Hay algunos números especiales...
902 Palabras | 4 Páginas
Leer documento completoDEFINICIÓN DE NÚMERO NATURALES: los números naturales (designados por ℕ) es cualquiera de los números que se usan para contar los elementos de un conjunto. Es todo número perteneciente a la serie formada por todos los números que, a partir del cero Entre los números naturales están definidas las operaciones adición y multiplicación. Además, el resultado de sumar o de multiplicar dos números naturales es también un número natural, por lo que se dice que son operaciones internas. Ejemplo: Propiedad...
666 Palabras | 3 Páginas
Leer documento completoGUARICO | Matemática Profesor (a): | PARTICIPANTE:Hernández Carolina R. | Octubre 2012 1. Números enteros (Z) Los números enteros son un conjunto de números que incluye a los números naturales distintos de cero (1, 2, 3.), los negativos de los números naturales (..., −3, −2, −1) y al 0. Los enteros negativos, como −1 o −3 (se leen «menos uno», «menos tres», etc.), son menores que todos los enteros positivos (1, 2,) y que el cero. Para resaltar la diferencia entre positivos...
1425 Palabras | 6 Páginas
Leer documento completoDEFINICION DE LOGARITMO ¿Qué es un logaritmo? Los logaritmos fueron ideados como una herramienta para facilitar el uso de las potencias y las raíces. El logaritmo de un número en una base dada es el exponente de aquella base que produce como potencia Hallarás más información en la enciclopedia de logaritmos ¿Quién ideó los logaritmos? La idea de los logaritmos fue madurando poco a poco en la historia, pero se considera que el personaje que los ideó fue John Neper en el siglo VII...
776 Palabras | 4 Páginas
Leer documento completoTitulo: POTENCIACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com El autor de este trabajo solicita su valiosa colaboración en el sentido de enviar cualquier sugerencia y/o recomendación a la siguiente dirección : martilloatomico@gmail.com Igualmente puede enviar cualquier ejercicio o problema que considere pueda ser incluido en el mismo. Si en sus horas...
996 Palabras | 4 Páginas
Leer documento completoExponentes Si n es un entero positivo, la notación exponencial a2 que se define en la tabla, representa el producto del número real a multiplicado n veces por si mismo. La expresión a2 se lee a a la enésima potencia o simplemente a a la n. El entero positivo se llama exponente y el numero real a, base. Notación exponencial Caso general (n es cualquier entero positivo) | Casos especiales | | | Ejemplos: es importante observar que si n es un entero positivo, entonces una expresión como...
854 Palabras | 4 Páginas
Leer documento completo Unidad I Potenciación y Radicación Objetivos Específicos Al terminar la presente Unidad Didáctica los estudiantes serán capaces de: Desarrollar y aplicar estrategias de cálculo de potencias y raíces utilizando las propiedades estudiadas. Apreciar la utilidad y la potencia que tiene en toda situación el razonamiento como parte de las matemáticas. Reconocer y aplicar razonamientos deductivos e inductivos en la solución de problemas donde se empleen potencias y raíces. UNIDAD 2 POTENCIACIÓN...
687 Palabras | 3 Páginas
Leer documento completoANA MARIA RAMIREZ SALINAS ADM4SB212 LIC. EN ADMINISTRACION OPERACIONES FINANCIERAS RIGOBERTO VIEYRA MOLINA LEYES DE LOS EXPONENTES Término utilizado en matemáticas para indicar el número de veces que una cantidad se ha de multiplicar por sí misma. Un exponente se escribe normalmente como un pequeño número o letra en la parte superior derecha de la expresión, como x2, leído “x al cuadrado” y que representa x · x; (x + y)3, se lee “x + y al cubo” y significa (x + y) (x + y) (x + y); y sen4x...
815 Palabras | 4 Páginas
Leer documento completo1.1 Exponentes y radicales 1.2 Expresiones algebraicas 1.3 Operaciones Algebraicas 1.4 Factorización 1.5 Teorema del binomio EXPONENTES Y RADICALES LEYES DE LOS EXPONENTES. Si a y b son números reales y m y n son enteros positivos, entonces: Teorema 1 aman = am + n Teorema 2 (am)n = amn Teorema 3 (ab)n = anbn Teorema 4 donde b ≠ 0 Teorema 5 Si a ≠ 0, entonces EXPONENTES FRACCIONARIOS POSITIVOS Si a R y m, n N, se define...
904 Palabras | 4 Páginas
Leer documento completo3. POTENCIACION Y RADICACION. 1. Revisemos los exponentes enteros de UN número real, el exponente cero, los exponentes negativos, los exponentes racionales, Las raíces de UN número real positivo con índice impar y la racionalización de expresiones. El producto de X × X × X × X se abrevia porque la X está 4 veces como factor podemos generalizar a X × X × X n veces como , siendo n UN número entero positivo, a X la llamamos base y a n exponente. Para n entero, se tiene...
564 Palabras | 3 Páginas
Leer documento completoLeyes de los exponentes Primera ley de los exponentes Sea un número real x diferente de cero y dos números naturales n y m también diferentes de cero. Entonces, se cumple que: Al multiplicar potencias con la misma base, se mantiene la base y se suman los exponentes. Ejemplos: 1. 2. 3. Segunda ley de los exponentes Sea un número real x diferente de cero y dos números naturales n y m también diferentes de cero. Entonces, se cumple que: Al dividir potencias con la misma base...
606 Palabras | 3 Páginas
Leer documento completoLeyes de los exponentes Los exponentes también se llaman potencias o índices El exponente de un número dice cuántas veces se multiplica el número. En este ejemplo: 82 = 8 × 8 = 64 En palabras: 82 se puede leer "8 a la segunda potencia", "8 a la potencia 2" o simplemente "8 al cuadrado" Leyes de los exponentes Primera ley : Producto de potencias con la misma base. El producto de potencias con la misma base (distinta de cero) es igual a la base elevada a la suma de los exponentes. ...
1396 Palabras | 6 Páginas
Leer documento completoLas leyes de los exponentes A la hora de evaluar y simplificar exponentes, utilizamos las Leyes de los Exponentes, una serie de reglas que nos sirven para hallar el valor de una expresión más rápidamente. Ley #1: am×an=am+n Ilustración #1: 64 ×62 64=6×6×6×6 62=6×6 64 ×62=(6×6×6×6)(6×6)=(6×6×6×6×6×6)=66 Por tanto, 64 ×62=64+2=66 Ilustración #2: a3 ×a5 a3=a×a×a a5=a×a×a×a×a. a3×a5=(a×a×a)(a×a×a×a×a)=(a×a×a×a×a×a×a×a)=a8 Por tanto, a3 ×a5=a3+5=a8 Ejemplo: Halle el valor de c6 ×c7 Solución: Como...
742 Palabras | 3 Páginas
Leer documento completoPROPIEDADES DE LA POTENCIACIÓN Multiplicación de potencias de igual base El producto de dos o más potencias de igual a base «a» es igual a la potencia de base a y exponente igual a la suma de los exponentes respectivos. ejemplos: División de Potencias de Igual Base La división de dos potencias de igual base a es igual a la potencia de base a y exponente igual a la resta de los exponentes respectivos (la misma base y se restan los exponentes. Potencia de una potencia La potencia de...
1361 Palabras | 6 Páginas
Leer documento completoLeyes de los Exponentes Objetivos Esta lección presenta los conceptos y destrezas básicas que te permitirán: Entender cada una de las leyes de los exponentes. Aplicar las leyes de los exponentes para simplificar expresiones. Definición: an=a×a×a×...×a (a multiplicado n veces) La letra a se llama la base, y a la letra n se le llama la potencia o exponente. La expresión an se lee “a elevada a la n”. Veamos algunos ejemplos: 23=2×2×2 (base: 2 exponente: 3) 57=5×5×5×5×5×5×5 (base:...
1008 Palabras | 5 Páginas
Leer documento completoDOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº 2: POTENCIACION Y RADICACION DE NUMEROS REALES 1. POTENCIA DE UN NÚMERO. Si , entonces , es igual al producto de n veces el número real a tomado c0mo factor, es decir Ejemplos: PROPIEDADES DE LA POTENCIACION • Producto de potencias de igual base: el producto de potencias de igual base, es otra potencia de la misma base y de exponente igual a la suma de los exponentes de los términos factores. Simbólicamente: Ejemplo:...
625 Palabras | 3 Páginas
Leer documento completo